野火鲁班猫(arrch64架构debian)从零实现用MobileFaceNet算法进行实时人脸识别(四)安装RKNN Toolkit Lite2

RKNN Toolkit Lite2 是瑞芯微专为RK系列芯片开发的NPU加速推理API。若不使用该工具,计算任务将仅依赖CPU处理,无法充分发挥芯片高达6TOPS的NPU算力优势。

按照官方文档先拉一下官方代码库,然后通过whl文件安装,因为我是python3.10环境,选择cp310的安装包

bash 复制代码
git clone https://gitee.com/LubanCat/lubancat_ai_manual_code.git
cd lubancat_ai_manual_code/dev_env/rknn_toolkit_lite2
pip install packages/rknn_toolkit_lite2-1.5.0-cp310-cp310-linux_aarch64.whl

使用官方demo测试是否安装成功,进到yolov5的demo里运行一下test.py

bash 复制代码
cd examples/yolov5_inference
python test.py

这时遇到错误:

bash 复制代码
Traceback (most recent call last):
  File "/home/cat/lubancat_ai_manual_code/dev_env/rknn_toolkit_lite2/examples/yolov5_inference/test.py", line 5, in <module>
    import cv2
ImportError: libOpenGL.so.0: cannot open shared object file: No such file or directory

安装libopengl0库解决:

bash 复制代码
sudo apt install libopengl0 -y

再次运行test.py成功识别图片里的各分类对象和位置:

bash 复制代码
--> Load RKNN model
done
--> Init runtime environment
I RKNN: [09:27:18.247] RKNN Runtime Information: librknnrt version: 1.5.0 (e6fe0c678@2023-05-25T08:09:20)
I RKNN: [09:27:18.248] RKNN Driver Information: version: 0.9.8
I RKNN: [09:27:18.253] RKNN Model Information: version: 4, toolkit version: 1.5.0+1fa95b5c(compiler version: 1.5.0 (e6fe0c678@2023-05-25T16:15:03)), target: RKNPU v2, target platform: rk3588, framework name: ONNX, framework layout: NCHW, model inference type: static_shape
done
--> Running model
W RKNN: [09:27:18.416] Output(269): size_with_stride larger than model origin size, if need run OutputOperator in NPU, please call rknn_create_memory using size_with_stride.
W RKNN: [09:27:18.417] Output(271): size_with_stride larger than model origin size, if need run OutputOperator in NPU, please call rknn_create_memory using size_with_stride.
W RKNN: [09:27:18.417] Output(273): size_with_stride larger than model origin size, if need run OutputOperator in NPU, please call rknn_create_memory using size_with_stride.
done
class: person, score: 0.8845707178115845
box coordinate left,top,right,down: [209.6862335205078, 243.11955797672272, 285.13685607910156, 507.7035621404648]
class: person, score: 0.8669421076774597
box coordinate left,top,right,down: [477.6677174568176, 241.89217948913574, 561.1506419181824, 524.2070636749268]
class: person, score: 0.8155205845832825
box coordinate left,top,right,down: [113.02320504188538, 234.78070652484894, 224.15367484092712, 535.1200503110886]
class: person, score: 0.3176437020301819
box coordinate left,top,right,down: [80.75779604911804, 354.98213291168213, 121.49669003486633, 516.5315389633179]
class: bus , score: 0.7036669850349426
box coordinate left,top,right,down: [93.71414947509766, 128.10655891895294, 554.3451156616211, 465.07032096385956]
相关推荐
棒棒的皮皮3 分钟前
【深度学习】YOLO模型评估之指标、可视化曲线分析
人工智能·深度学习·yolo·计算机视觉
驭白.22 分钟前
不止于自动化:新能源汽车智造的数字基座如何搭建?
大数据·人工智能·自动化·汽车·数字化转型·制造业
tianyue10029 分钟前
STM32G431 ADC 多个channel 采集
stm32·单片机·嵌入式硬件
企业智能研究42 分钟前
什么是数据治理?数据治理对企业有什么用?
大数据·人工智能·数据分析·agent
阿里云大数据AI技术1 小时前
面向 Interleaved Thinking 的大模型 Agent 蒸馏实践
人工智能
AI Echoes1 小时前
LangChain 非分割类型的文档转换器使用技巧
人工智能·python·langchain·prompt·agent
哔哔龙1 小时前
LangChain核心组件可用工具
人工智能
全栈独立开发者1 小时前
点餐系统装上了“DeepSeek大脑”:基于 Spring AI + PgVector 的 RAG 落地指南
java·人工智能·spring
程序之巅1 小时前
VS code 远程python代码debug
android·java·python
2501_941878742 小时前
在班加罗尔工程实践中构建可持续演进的机器学习平台体系与技术实现分享
人工智能·机器学习