神经网络与深度学习(第二章)

1.机器学习四要素

(1)数据:模型训练的基本

(2)模型:根据任务和数据类型选择合适的模型

(3)学习准则:计算损失

(4)优化算法:根据损失使用梯度下降or反向传播算法更新模型参数,从而优化模型

本质:通过数据训练所选择的模型,然后计算误差,再根据误差进行优化更新模型参数

2.过拟合和欠拟合的含义

过拟合:模型在训练集上学习的"过好",把噪声和无关特征都学习进去了,导致在测试集上的性能很差,泛化性差

欠拟合:模型在训练集和测试集上的性能都很差,主要因为模型的复杂度过低

3.经验风险和结构风险含义

经验风险:优化时追求训练集误差最小化,容易学习噪声导致过拟合

结构风险:考虑经验风险和模型复杂度,让模型复杂度作为经验风险的约束项,从而避免过拟合,提高模型的泛化能力

4.线性回归

机器学习中的基石模型:用一条直线或超平面去拟合所有的数据,通过最小化均值平方误差更新参数(梯度下降法),对异常值敏感,无法拟合非线性的数据集

5.极大似然估计

选择使当前数据出现概率最大的一组参数作为最优估计

步骤:先得到似然函数L,对L取对数然后对各个参数求偏导使偏导为0得到的参数结构即为参数最优估计

相关推荐
vlln8 分钟前
【论文解读】ReAct:从思考脱离行动, 到行动反馈思考
人工智能·深度学习·机器学习
lqj_本人27 分钟前
鸿蒙OS&UniApp结合机器学习打造智能图像分类应用:HarmonyOS实践指南#三方框架 #Uniapp
机器学习·uni-app·harmonyos
土豆杨6261 小时前
隐藏层-机器学习
python·机器学习
试剂界的爱马仕1 小时前
软珊瑚成分 CI-A:靶向口腔癌细胞的 “氧化利剑” 与 ERK 密码
网络·人工智能·科技·机器学习·ci/cd·ai写作
superior tigre2 小时前
RNN循环网络:给AI装上“记忆“(superior哥AI系列第5期)
人工智能·rnn·深度学习
(・Д・)ノ2 小时前
python打卡day44
人工智能·python·机器学习
视觉语言导航3 小时前
低空城市场景下的多无人机任务规划与动态协调!CoordField:无人机任务分配的智能协调场
人工智能·深度学习·无人机·具身智能
处女座_三月4 小时前
torch.randn vs torch.rand
人工智能·深度学习·机器学习
丁值心4 小时前
6.04打卡
开发语言·人工智能·python·深度学习·机器学习·支持向量机
codegarfield4 小时前
关于神经网络中的激活函数
人工智能·深度学习·神经网络·激活函数