神经网络与深度学习(第二章)

1.机器学习四要素

(1)数据:模型训练的基本

(2)模型:根据任务和数据类型选择合适的模型

(3)学习准则:计算损失

(4)优化算法:根据损失使用梯度下降or反向传播算法更新模型参数,从而优化模型

本质:通过数据训练所选择的模型,然后计算误差,再根据误差进行优化更新模型参数

2.过拟合和欠拟合的含义

过拟合:模型在训练集上学习的"过好",把噪声和无关特征都学习进去了,导致在测试集上的性能很差,泛化性差

欠拟合:模型在训练集和测试集上的性能都很差,主要因为模型的复杂度过低

3.经验风险和结构风险含义

经验风险:优化时追求训练集误差最小化,容易学习噪声导致过拟合

结构风险:考虑经验风险和模型复杂度,让模型复杂度作为经验风险的约束项,从而避免过拟合,提高模型的泛化能力

4.线性回归

机器学习中的基石模型:用一条直线或超平面去拟合所有的数据,通过最小化均值平方误差更新参数(梯度下降法),对异常值敏感,无法拟合非线性的数据集

5.极大似然估计

选择使当前数据出现概率最大的一组参数作为最优估计

步骤:先得到似然函数L,对L取对数然后对各个参数求偏导使偏导为0得到的参数结构即为参数最优估计

相关推荐
NeoFii1 小时前
Day 22: 复习
机器学习
宇称不守恒4.02 小时前
2025暑期—06神经网络-常见网络2
网络·人工智能·神经网络
码字的字节3 小时前
深度学习损失函数的设计哲学:从交叉熵到Huber损失的深入探索
深度学习·交叉熵·huber
凪卄12133 小时前
图像预处理 二
人工智能·python·深度学习·计算机视觉·pycharm
巫婆理发2223 小时前
强化学习(第三课第三周)
python·机器学习·深度神经网络
碳酸的唐3 小时前
Inception网络架构:深度学习视觉模型的里程碑
网络·深度学习·架构
AI赋能3 小时前
自动驾驶训练-tub详解
人工智能·深度学习·自动驾驶
seasonsyy3 小时前
1.安装anaconda详细步骤(含安装截图)
python·深度学习·环境配置
deephub3 小时前
AI代理性能提升实战:LangChain+LangGraph内存管理与上下文优化完整指南
人工智能·深度学习·神经网络·langchain·大语言模型·rag
go54631584654 小时前
基于深度学习的食管癌右喉返神经旁淋巴结预测系统研究
图像处理·人工智能·深度学习·神经网络·算法