从onnx模型到om模型的全自动化转化

自动化om模型转换

项目位置:

https://github.com/whypoxic/Ascend-ATC-tool_onnx2om

使用前请参考本文档
Written by whypoxic

本项目适用海思系列/昇腾npu算力开发板

使用开发板时,请及时查看该板卡所支持的昇腾驱动包版本,从算力板官方资料或昇腾官方获取Ascend-toolkit工具包,并将你的工具包替换Ascend目录下的驱动包内容

Ascend-toolkit工具包获取可查看本目录下的 安装昇腾工具包指南.md

本项目提供自动化脚本,用于将 .onnx 神经网络模型 转化为 .om 适配昇腾平台的模型

若使用yolo(.pt)或其他模型,需要先转化为.onnx通用模型;

以yolo模型为例,yolo官方提供export.py用于.onnx的模型转化

已经提供好自动化脚本,可供直接运行。

运行前,需要将需要转换的.onnx模型放入run目录下

(脚本会进行conda环境的创建,因此建议提前安装好miniconda;若没有,脚本会自动安装)

(项目初始提供了一个test.onnx用于测试,实际使用请替换)

在当前目录下,进入终端赋予脚本运行权限,执行脚本:

复制代码
chmod +x all-run.sh

./all-run.sh test.onnx out

脚本需要两个参数输入:第一个是run目录下的onnx模型文件名(需要后缀);第二个是生成om文件的命名。

  • 脚本会执行conda环境的创建,新建一个atc的conda环境,安装指定版本的python与相应包。

  • 在该环境下,使用昇腾工具包下的atc工具执行转换。

转换完成后,生成的.om文件会在run目录下生成。

若自动化脚本出现异常,或者需要手动修改部分参数,可以使用命令行进行手动调用来执行转换。

命令行全过程操作参考本目录下的:手动转换指南.md

相关推荐
噜~噜~噜~7 小时前
最大熵原理(Principle of Maximum Entropy,MaxEnt)的个人理解
深度学习·最大熵原理
小女孩真可爱8 小时前
大模型学习记录(五)-------调用大模型API接口
pytorch·深度学习·学习
水月wwww12 小时前
深度学习——神经网络
人工智能·深度学习·神经网络
青瓷程序设计12 小时前
花朵识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
青瓷程序设计13 小时前
鱼类识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
WWZZ202514 小时前
快速上手大模型:深度学习13(文本预处理、语言模型、RNN、GRU、LSTM、seq2seq)
人工智能·深度学习·算法·语言模型·自然语言处理·大模型·具身智能
枯木逢秋࿐15 小时前
深度学习常用模型
深度学习
哥布林学者17 小时前
吴恩达深度学习课程三: 结构化机器学习项目 第一周:机器学习策略(一)正交化调优和评估指标
深度学习·ai
Petrichor_H_17 小时前
DAY 39 图像数据与显存
人工智能·深度学习