从onnx模型到om模型的全自动化转化

自动化om模型转换

项目位置:

https://github.com/whypoxic/Ascend-ATC-tool_onnx2om

使用前请参考本文档
Written by whypoxic

本项目适用海思系列/昇腾npu算力开发板

使用开发板时,请及时查看该板卡所支持的昇腾驱动包版本,从算力板官方资料或昇腾官方获取Ascend-toolkit工具包,并将你的工具包替换Ascend目录下的驱动包内容

Ascend-toolkit工具包获取可查看本目录下的 安装昇腾工具包指南.md

本项目提供自动化脚本,用于将 .onnx 神经网络模型 转化为 .om 适配昇腾平台的模型

若使用yolo(.pt)或其他模型,需要先转化为.onnx通用模型;

以yolo模型为例,yolo官方提供export.py用于.onnx的模型转化

已经提供好自动化脚本,可供直接运行。

运行前,需要将需要转换的.onnx模型放入run目录下

(脚本会进行conda环境的创建,因此建议提前安装好miniconda;若没有,脚本会自动安装)

(项目初始提供了一个test.onnx用于测试,实际使用请替换)

在当前目录下,进入终端赋予脚本运行权限,执行脚本:

复制代码
chmod +x all-run.sh

./all-run.sh test.onnx out

脚本需要两个参数输入:第一个是run目录下的onnx模型文件名(需要后缀);第二个是生成om文件的命名。

  • 脚本会执行conda环境的创建,新建一个atc的conda环境,安装指定版本的python与相应包。

  • 在该环境下,使用昇腾工具包下的atc工具执行转换。

转换完成后,生成的.om文件会在run目录下生成。

若自动化脚本出现异常,或者需要手动修改部分参数,可以使用命令行进行手动调用来执行转换。

命令行全过程操作参考本目录下的:手动转换指南.md

相关推荐
小白狮ww4 天前
LAMMPS 教程:移动原子演示
人工智能·深度学习·机器学习
CoovallyAIHub5 天前
中科大DSAI Lab团队多篇论文入选ICCV 2025,推动三维视觉与泛化感知技术突破
深度学习·算法·计算机视觉
CoovallyAIHub5 天前
开源的消逝与新生:从 TensorFlow 的落幕到开源生态的蜕变
pytorch·深度学习·llm
CoovallyAIHub5 天前
港大&字节重磅发布DanceGRPO:突破视觉生成RLHF瓶颈,多项任务性能提升超180%!
深度学习·算法·计算机视觉
CoovallyAIHub5 天前
英伟达ViPE重磅发布!解决3D感知难题,SLAM+深度学习完美融合(附带数据集下载地址)
深度学习·算法·计算机视觉
惯导马工6 天前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
隐语SecretFlow7 天前
国人自研开源隐私计算框架SecretFlow,深度拆解框架及使用【开发者必看】
深度学习
Billy_Zuo7 天前
人工智能深度学习——卷积神经网络(CNN)
人工智能·深度学习·cnn
羊羊小栈7 天前
基于「YOLO目标检测 + 多模态AI分析」的遥感影像目标检测分析系统(vue+flask+数据集+模型训练)
人工智能·深度学习·yolo·目标检测·毕业设计·大作业
l12345sy7 天前
Day24_【深度学习—广播机制】
人工智能·pytorch·深度学习·广播机制