Day22_【机器学习—集成学习(4)—Boosting—GBDT算法】

提升树 (Boosting Decision Tree )

每一个弱学习器通过拟合残差来构建强学习器

梯度提升树 (Gradient Boosting Decision Tree)

每一个弱学习器通过拟合负梯度来构建强学习器

一、提升树

残差

数学公式为:

残差=真实值−预测值

其中:

  • ri:第 i 个样本的残差
  • yi:第 i 个样本的真实值(观测值)
  • y^i:模型对第 i 个样本的预测值

二、GBDT

GBDT(梯度提升树)不再拟合残差,而是利用梯度下降的近似方法,利用损失函数的负梯度作为提升树算法中的残差近似值。

负梯度

负梯度=残差=真实值-预测值

流程

1 初始化弱学习器(目标值的均值作为预测值)

2 迭代构建学习器,每一个学习器拟合上一个学习器的负梯度

3 直到达到指定的学习器个数

4 当输入未知样本时,将所有弱学习器的输出结果组合起来作为强学习器的输出

详细过程

相关推荐
雪碧聊技术8 小时前
深度学习、机器学习、人工智能三者的关系
人工智能·深度学习·机器学习
β添砖java8 小时前
机器学习初级
人工智能·机器学习
qq_17082750 CNC注塑机数采9 小时前
【Python TensorFlow】 TCN-GRU时间序列卷积门控循环神经网络时序预测算法(附代码)
python·rnn·神经网络·机器学习·gru·tensorflow·tcn
~~李木子~~9 小时前
中文社交媒体情感分析实战:基于B站评论的机器学习与深度学习对比
深度学习·机器学习·媒体
学习中的数据喵10 小时前
可以看穿事物“本质“的LDA
人工智能·机器学习
orion-orion11 小时前
学习理论:凸代理、代理与估计误差界
机器学习·统计学习·学习理论
simon_skywalker12 小时前
线性代数及其应用习题答案(中文版)第一章 线性代数中的线性方程组 1.4 矩阵方程Ax=b(1)
线性代数·机器学习·矩阵
لا معنى له12 小时前
残差网络论文学习笔记:Deep Residual Learning for Image Recognition全文翻译
网络·人工智能·笔记·深度学习·学习·机器学习
工业机器视觉设计和实现12 小时前
lenet改vgg训练cifar10突破71分
人工智能·机器学习