Day22_【机器学习—集成学习(4)—Boosting—GBDT算法】

提升树 (Boosting Decision Tree )

每一个弱学习器通过拟合残差来构建强学习器

梯度提升树 (Gradient Boosting Decision Tree)

每一个弱学习器通过拟合负梯度来构建强学习器

一、提升树

残差

数学公式为:

残差=真实值−预测值

其中:

  • ri:第 i 个样本的残差
  • yi:第 i 个样本的真实值(观测值)
  • y^i:模型对第 i 个样本的预测值

二、GBDT

GBDT(梯度提升树)不再拟合残差,而是利用梯度下降的近似方法,利用损失函数的负梯度作为提升树算法中的残差近似值。

负梯度

负梯度=残差=真实值-预测值

流程

1 初始化弱学习器(目标值的均值作为预测值)

2 迭代构建学习器,每一个学习器拟合上一个学习器的负梯度

3 直到达到指定的学习器个数

4 当输入未知样本时,将所有弱学习器的输出结果组合起来作为强学习器的输出

详细过程

相关推荐
知乎的哥廷根数学学派2 分钟前
基于物理信息嵌入与多维度约束的深度学习地基承载力智能预测与可解释性评估算法(以模拟信号为例,Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习
格林威28 分钟前
印刷电路板阻焊层缺失识别:防止短路风险的 7 个核心策略,附 OpenCV+Halcon 实战代码!
人工智能·数码相机·opencv·机器学习·计算机视觉·视觉检测·工业相机
liu****33 分钟前
git工具
git·python·算法·机器学习·计算机基础
冰西瓜6001 小时前
从项目入手机器学习——(一)数据预处理(上)
人工智能·机器学习
sunfove1 小时前
空间几何的基石:直角、柱、球坐标系的原理与转换详解
人工智能·python·机器学习
知乎的哥廷根数学学派1 小时前
基于多尺度特征提取和注意力自适应动态路由胶囊网络的工业轴承故障诊断算法(Pytorch)
开发语言·网络·人工智能·pytorch·python·算法·机器学习
Yuer20251 小时前
低熵回答倾向:语言模型中的一种系统稳定态
人工智能·机器学习·语言模型·ai安全·edca os
郝学胜-神的一滴2 小时前
《机器学习》经典教材全景解读:周志华教授匠心之作的技术深探
数据结构·人工智能·python·程序人生·机器学习·sklearn
知乎的哥廷根数学学派2 小时前
基于物理约束与多源知识融合的浅基础极限承载力智能预测与工程决策优化(以模拟信号为例,Pytorch)
人工智能·pytorch·python·深度学习·神经网络·机器学习
向量引擎小橙2 小时前
智能体“组团”时代:通信协议标准化如何颠覆未来协作模式?
大数据·人工智能·深度学习·集成学习