The learning process of Decision Tree Model|决策树模型学习过程


这是我在我的网站中截取的文章,有更多的文章欢迎来访问我自己的博客网站rn.berlinlian.cn,这里还有很多有关计算机的知识,欢迎进行留言或者来我的网站进行留言!!!


一、决策树模型:分类示例

这幅图片展示了一个决策树模型,用于区分动物是否为猫。在这个例子中,决策树使用耳朵形状、面部形状和胡须的存在与否来确定一个动物是否是猫。

以下是决策树的详细解释:

  1. 根节点(Root Node)

    • 决策树的顶部是根节点,这里表示的是"耳朵形状"(Ear shape)。
  2. 第一层分支(First Level of Branches)

    • 从根节点出发,有两个分支:

      • 如果耳朵是"尖的"(Pointy),则进入左侧的分支。

      • 如果耳朵是"垂的"(Floppy),则进入右侧的分支。

  3. 第二层节点(Second Level Nodes)

    • 左侧分支指向"面部形状"(Face shape):

      • 如果面部形状是"圆的"(Round),则该动物是猫。

      • 如果面部形状不是圆的,则该动物不是猫。

    • 右侧分支指向"胡须"(Whiskers):

      • 如果胡须"存在"(Present),则该动物是猫。

      • 如果胡须"不存在"(Absent),则该动物不是猫。

  4. 叶节点(Leaf Nodes)

    • 决策树的底部是叶节点,表示最终的分类结果:

      • 左侧有两个叶节点,分别表示"猫"(Cat)和"不是猫"(Not cat)。

      • 右侧也有两个叶节点,同样表示"猫"(Cat)和"不是猫"(Not cat)。

  5. 示例动物

    • 图片底部展示了一些动物的图标,这些图标用来说明决策树的分类结果:

      • 左侧的图标是猫,它们符合"尖耳朵"和"圆脸"的条件。

      • 右侧的图标不是猫,它们可能是其他动物,如狗或狼,它们不符合猫的特征。

这个决策树模型通过简单的特征(耳朵形状、面部形状和胡须)来进行分类,展示了决策树如何通过一系列的决策规则来预测结果。


二、决策树模型的关键决策

1. 决策树学习中的特征选择:选择最佳分割特征

  • 决策树通过在每个节点上选择一个特征进行分割来构建。选择特征的目标是最大化节点的纯度(或最小化不纯度)。

  • 图片展示了一个决策树的示例,用于分类猫和非猫。树的每个节点根据耳朵形状、面部形状和胡须的存在与否进行分割。

  • 每个节点下方展示了该节点包含的猫和非猫的数量,以及猫的比例。例如,耳朵形状为"Pointy"的节点中有4只猫和1只非猫,猫的比例为4/5。

  • 通过比较不同特征分割后的纯度,算法选择能够最大化纯度的特征进行分割。在这个例子中,"Cat DNA"特征提供了最高的纯度,因为它完全区分了猫和非猫。


2. 决策树学习中的停止条:决定何时停止分割

  • 决策树学习过程中的另一个关键决策是何时停止对节点进行分割。这是为了避免过拟合,即模型在训练数据上表现很好,但在新数据上表现不佳。

  • 图片列出了四个停止分割的条件:

    1. 当一个节点是100%一个类别时,这个节点是纯净的,不需要进一步分割。

    2. 当分割一个节点会导致树超过最大深度时,停止分割以防止树变得过于复杂。

    3. 当纯度分数的改进低于一个阈值时,停止分割,因为进一步分割带来的改进很小。

    4. 当节点中的样本数量低于一个阈值时,停止分割,因为样本太少可能导致过拟合。

  • 图片右侧展示了一个简化的决策树示例,说明了如何根据面部形状进行分割。这个示例展示了如何根据停止条件来决定是否继续分割节点。


通过这两个关键决策,决策树学习算法能够有效地构建模型,同时避免过拟合,提高模型的泛化能力。


这是我在我的网站中截取的文章,有更多的文章欢迎来访问我自己的博客网站rn.berlinlian.cn,这里还有很多有关计算机的知识,欢迎进行留言或者来我的网站进行留言!!!


相关推荐
龙山云仓10 小时前
MES系统超融合架构
大数据·数据库·人工智能·sql·机器学习·架构·全文检索
zxsz_com_cn10 小时前
设备预测性维护指的是什么 设备预测性维护传感器的作用
人工智能
可编程芯片开发10 小时前
基于PSO粒子群优化PI控制器的无刷直流电机最优控制系统simulink建模与仿真
人工智能·算法·simulink·pso·pi控制器·pso-pi
迎仔10 小时前
02-AI常见名词通俗解释
人工智能
程序员ken10 小时前
深入理解大语言模型(8) 使用 LangChain 开发应用程序之上下文记忆
人工智能·python·语言模型·langchain
魔力军10 小时前
Rust学习Day3: 3个小demo实现
java·学习·rust
盼小辉丶10 小时前
Transformer实战——微调多语言Transformer模型
深度学习·语言模型·transformer
Tadas-Gao10 小时前
深度学习与机器学习的知识路径:从必要基石到独立范式
人工智能·深度学习·机器学习·架构·大模型·llm
TTGGGFF10 小时前
从“千问送奶茶”看AI Agent落地:火爆、崩塌与进化方向
人工智能
OPEN-Source11 小时前
大模型实战:把自定义 Agent 封装成一个 HTTP 服务
人工智能·agent·deepseek