
机器视觉检测的光源基础知识及光源选型
- 机器视觉光源怎么选?一篇看懂基础与选型逻辑
-
- 🎯一、光源的核心作用:不止是"照亮"
- 🎯二、光的"小脾气":颜色与角度决定效果
-
- [1. 颜色:选对了,特征更突出](#1. 颜色:选对了,特征更突出)
- [2. 角度:明暗场的"开关"](#2. 角度:明暗场的“开关”)
- 🎯三、主流光源:LED是绝对主力
- 🎯四、选型三步走:从需求到测试
- 🎯五、总结:打光是"给算法喂好料"
机器视觉光源怎么选?一篇看懂基础与选型逻辑
机器视觉里,光源不是"随便照亮"就行------它是给相机"打辅助"的关键,选不对,再牛的算法也难识别缺陷。这篇就拆解光源的核心知识,教你快速找到合适的打光方案。
🎯一、光源的核心作用:不止是"照亮"
机器视觉的光源,本质是制造"差异":让目标特征(比如划痕、字符)和背景形成明显对比,方便算法"抓重点"。具体来说,它要做到这几点:
- 提反差:比如用低角度光让金属表面的划痕"亮起来",背景保持黑暗;
- 抗干扰:抵消车间灯光、阳光的影响,确保白天黑夜拍的图"一致性";
- 降难度:好的打光能减少阴影、反光,算法不用花大力气去"去噪";
- 当标尺:有些检测(如尺寸测量)中,光源的明暗分布还能作为参考基准。
没有万能光源,每个场景的打光都是"定制化方案"。

🎯二、光的"小脾气":颜色与角度决定效果
1. 颜色:选对了,特征更突出
光的颜色由波长决定,而物体颜色和光源颜色的搭配直接影响亮度:
- 用和物体同色的光照射(比如红色物体用红光),物体看起来更亮;
- 用互补色光(比如红色物体用绿光),物体则会变暗。
举例:检测黑色塑料上的白色字符,用白光或蓝光(黑色吸收红光多,对蓝光反射强),字符会更清晰。
2. 角度:明暗场的"开关"
光源照射角度是关键,分两种经典模式:
- 明场照明(高角度,如垂直照射):光线从上方打下来,物体表面反光多,背景亮,适合看凸起、纹理(比如瓶盖的纹路);
- 暗场照明(低角度,如15°斜射):光线从侧面扫过,平整表面反光少(背景暗),但划痕、凹陷处会反光(特征亮),适合检测金属表面的细微划伤。

🎯三、主流光源:LED是绝对主力
机器视觉里,光源就三类:荧光灯(色准好,但寿命短)、卤素灯(亮度高,费电)、LED灯(性价比之王)。现在90%的场景都用LED,因为它:
- 寿命长(几万小时,是荧光灯的10倍);
- 可定制形状(环形、条形、方形都能做);
- 支持频闪(配合高速流水线,瞬间亮度拉满)。
常见LED光源及用法:
- 环形光源:百搭款,分高角度(明场)和低角度(暗场),适合小零件(如手机螺丝、电子元件);
- 条形光源:长条形,可拼接,适合大平面(如PCB板、玻璃);
- 同轴光源:光线经分光镜垂直照射,能消除表面不平整的阴影,适合检测反光强的物体(如手机屏幕、金属片);
- 背光源:从物体背面打光,能清晰显示轮廓(如检测瓶盖是否变形、透明膜里的杂质);
- ** Dome光源**:半球形,光线经内壁多次反射后均匀照射,适合曲面物体(如球体、瓶盖侧面),无阴影。

🎯四、选型三步走:从需求到测试
- 明确目标:要检测什么?是划痕、字符、还是尺寸?缺陷是凸还是凹?是反光材质还是哑光?
- 抓差异点:目标和背景的光学差异在哪?比如颜色不同(用颜色搭配)、高度不同(用角度控制)、透明度不同(用背光);
- 实测验证:拿样品试!先试主流类型(环形、条形),换颜色(白、红、蓝),调角度(高/低),看哪种打光下缺陷最"扎眼"。
避坑提示:
- 反光严重?试试同轴光源+偏振片,过滤杂散光;
- 阴影多?用Dome光源或多角度组合光;
- 视野大?条形光源拼接,或线扫专用的线光源。

🎯五、总结:打光是"给算法喂好料"
机器视觉的流程是"光→图→算法",光源是"第一环"。选对了,后续一切都顺;选错了,再强的算法也"巧妇难为无米之炊"。记住:先理解缺陷的特征,再用光源放大它和背景的差异,这就是选型的核心逻辑。