python学智能算法(三十九)|使用PyTorch模块的normal()函数绘制正态分布函数图

【1】引言

前序已经学习了使用Numpy和PyTorch模块绘制正态分布函数图的基本技巧,掌握了
p ( x ) = 1 2 π σ 2 e x p ( − 1 2 σ 2 ( x − μ ) 2 ) p(x)=\frac{1}{\sqrt{2\pi\sigma^2}}exp(-\frac{1}{2\sigma^2}(x-\mu)^2) p(x)=2πσ2 1exp(−2σ21(x−μ)2)

在PyTorch里面绘制图像的基本技巧。

今天更进一步,使用torch.normal()函数直接绘制正态分布函数图。

【2】torch.normal()函数

【2.1】生成随机数

torch.normal()函数可以直接绘制正态分布函数图。

这个函数的作用是生成符合正态分布的随机数,比如:

python 复制代码
# 引入模块 
import torch
# 使用torch.normal()函数生成随机数
x=torch.normal(0,1,(2,3))
print(x)
a=len(x)
print('a=',a)

这个代码运行会生成2行3列的满足均值为0、标准差为1的正态分布随机数。

【2.2】对随机数绘图

torch.normal()函数可以直接获得正态分布随机数,那数据就可以画出图像。

这个图像的最佳画法就是使用hist()函数来绘制概率分布图,随机数如何分布的情况一目了然。

为了做对比,我们也可以自己按照上述正态分布函数式来自定义图像。

这里给出代码:

python 复制代码
import torch
import matplotlib.pyplot as plt
import numpy as np

# 生成不同样本量的数据
sample_sizes = [100, 1000, 10000]  # 三种样本量

# 生成x轴数据(用于理论曲线)
x_range = np.arange(-5, 5,0.01)
datasets = [torch.normal(0, 1, (size,)).numpy() for size in sample_sizes]
# 定义正态分布概率密度函数(理论曲线)
def normal_pdf(x, mean=0, std=1):
    return (1 / (std * np.sqrt(2 * np.pi))) * np.exp(-0.5 * ((x - mean) / std) ** 2)


# 计算理论曲线值
y_theoretical = normal_pdf(x_range)
# 创建画布和子图
fig, ax = plt.subplots(1, 3)
for i in range(3):
    ax[i].hist(datasets[i],bins=int(sample_sizes[i]*0.3), density=True, alpha=0.5, color='skyblue', edgecolor='black')
    # 叠加理论正态分布曲线
    ax[i].plot(x_range, y_theoretical, 'r-', linewidth=2, label='理论分布')
    print(len(datasets[i]))
    if i == 0:  # 仅第一个子图显示y轴标签(避免重复)
        ax[i].set_ylabel('torch.normal', fontsize=12)
    if i == 1:  # 仅第二个子图显示x轴标签(避免重复)
        ax[1].set_xlabel('x', fontsize=12)

plt.show()

代码给出了三个数量级的随机数概率分布直方图,第一个有100个数据,第二个有1000个数据,第三个有10000个数据。数据越多,理论上正态分布的效果越明显,实际的图像效果为:

虽然图像在高度上发生了变化,但显然数据越多,直方图和曲线图拟合得更好。

【3】细节

需要注意的是,图像越来越黑,是因为hist()函数绘制了很多边框,边框的颜色edgecolor是黑色的。bins=int(sample_sizes[i]*0.3)表明数据越多,边框越多,所以黑色越来越多。

ax[i].hist(datasets[i],bins=int(sample_sizes[i]*0.3), density=True, alpha=0.5, color='skyblue', edgecolor='black')

如果想让图像的颜色一致,最佳办法就是统一所有的边框数量,比如限制边框数量为30,此时的图像效果为:

【4】说明

虽然上述代码简洁的表明了torch.normal()函数可以生成好用的正态分布随机数,但是这个代码显然写起来要比numpy模块复杂一些。

并且当前只对torch.normal(0, 1, (size,))画了图,还没有开展更复杂的图像绘制。,学习的路还长。

【5】总结

学习了使用PyTorch模块的normal()函数绘制正态分布函数图的基本方法。

相关推荐
zezexihaha2 小时前
AI 在医疗领域的十大应用:从疾病预测到手术机器人
人工智能·机器人
风亦辰7392 小时前
深度学习初探:神经网络的基本结构
人工智能·深度学习·神经网络
MoRanzhi12032 小时前
9. NumPy 线性代数:矩阵运算与科学计算基础
人工智能·python·线性代数·算法·机器学习·矩阵·numpy
WangYan20222 小时前
Transformer模型/注意力机制/目标检测/语义分割/图神经网络/强化学习/生成式模型/自监督学习/物理信息神经网络等
人工智能·深度学习·transformer
金井PRATHAMA2 小时前
GraphRAG:引领自然语言处理进入深层语义分析新纪元
人工智能·自然语言处理·知识图谱
新子y2 小时前
《代码的“言外之意”:从词源学透彻理解编程》字符的“双重生活”:从Escape到Raw
笔记·python
拓端研究室3 小时前
专题:2025年AI Agent智能体行业洞察报告|附110+份报告PDF、数据仪表盘汇总下载
人工智能
墨^O^3 小时前
网络通信协议全解析:HTTP/UDP/TCP核心要点
linux·服务器·网络·学习