机器学习催化剂设计!

机器学习正引领催化材料设计范式的革命性转变,通过融合多尺度模拟与高通量实验数据,构建从原子结构到宏观性能的智能映射关系。当前研究前沿聚焦四大方向:利用图神经网络精准解析催化活性描述符与吸附能之间的非线性关联;通过物理信息神经网络耦合第一性原理计算,突破传统d带中心理论的局限;采用生成对抗网络逆向设计具有特定活性位点的多孔框架材料;结合主动学习策略加速电催化析氢/析氧反应中贵金属替代材料的筛选。特别值得关注的是,符号回归技术正从海量数据中自动提取人类未认知的催化描述符,而迁移学习则有效解决了催化领域高质量数据稀缺的瓶颈问题。该领域已从单纯的性能预测迈向"机理发现---动态优化---自主合成"的全链条创新,为实现碳中和目标下的高效能源转换催化剂提供了全新研发范式。

https://mp.weixin.qq.com/s/7P2pniYn9NjlxYX6AftHOw 点击此链接查看详情!

相关推荐
CoovallyAIHub2 分钟前
中科大西工大提出RSKT-Seg:精度速度双提升,开放词汇分割不再难
深度学习·算法·计算机视觉
LO嘉嘉VE1 小时前
学习笔记十:多分类学习
机器学习
月下倩影时1 小时前
视觉学习篇——理清机器学习:分类、流程与技术家族的关系
学习·机器学习·分类
算法与编程之美1 小时前
探索不同的优化器、损失函数、batch_size对分类精度影响
人工智能·机器学习·计算机视觉·分类·batch
Blossom.1187 小时前
移动端部署噩梦终结者:动态稀疏视觉Transformer的量化实战
java·人工智能·python·深度学习·算法·机器学习·transformer
轻微的风格艾丝凡7 小时前
卷积的直观理解
人工智能·深度学习·神经网络·算法·计算机视觉·matlab·cnn
月下倩影时8 小时前
视觉进阶篇——机器学习训练过程(手写数字识别,量大管饱需要耐心)
人工智能·学习·机器学习
这张生成的图像能检测吗8 小时前
(论文速读)基于DCP-MobileViT网络的焊接缺陷识别
图像处理·深度学习·计算机视觉·可视化·缺陷识别·焊缝缺陷
xier_ran11 小时前
深度学习:Mini-Batch 梯度下降(Mini-Batch Gradient Descent)
人工智能·深度学习·batch
生信大表哥12 小时前
贝叶斯共识聚类(BCC)
机器学习·数据挖掘·聚类