347. 前 K 个高频元素【中等】

给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。你可以按 任意顺序 返回答案。

示例 1:

**输入:**nums = [1,1,1,2,2,3], k = 2

输出:[1,2]

示例 2:

**输入:**nums = [1], k = 1

输出:[1]

示例 3:

**输入:**nums = [1,2,1,2,1,2,3,1,3,2], k = 2

输出:[1,2]

一、最小堆

思路:

这是一个Top K 问题 ,优先想到的就是使用最小堆/最大堆 ,使用优先级队列 PriorityQueue实现,PriorityQueue 虽然继承队列接口,但实际底层封装的是树结构,所以它满足堆的所有特性,它就是堆的具体实现。

我们首先创建一个哈希map,key存数组元素,value 存出现的频率,使用map辅助,一是能记录频率,二是能去重。再创建一个最小堆,用map 中的value 来排序。在遍历map 的键数组的过程中,让堆的大小为k,超出k 时移除堆顶元素,最后得到的堆就是包含前k 个高频元素的堆了。

时间复杂度O(n log k),因为堆是树结构,所以插入删除都是log k,当数组元素都不同时遍历耗时n

代码:

java 复制代码
class Solution {
    public int[] topKFrequent(int[] nums, int k) {
        // 使用map辅助,一是能记录频率,二是能去重
        Map<Integer, Integer> frequentMap = new HashMap<>();

        for(int num : nums){
            frequentMap.put(num, frequentMap.getOrDefault(num, 0) + 1);
        }

        PriorityQueue<Integer> minHeap = new PriorityQueue<>(
            (a, b) -> frequentMap.get(a) - frequentMap.get(b)
        );

        // map的keySet帮助去重了
        for(int num : frequentMap.keySet()){
            minHeap.offer(num);

            if(minHeap.size() > k){
                minHeap.poll(); 
            }
        }

        int[] reslut = new int[k];
        for(int i = 0; i < k; i++){
            reslut[i] = minHeap.poll();
        }
        
        return reslut;
    }
}
相关推荐
蘑菇小白28 分钟前
数据结构--栈
数据结构·算法·
(●—●)橘子……29 分钟前
力扣344.反转字符串 练习理解
python·学习·算法·leetcode·职场和发展
qq_4579242929 分钟前
[rdk系列之情绪识别算法上板运行]
算法
Bdygsl33 分钟前
数字图像处理总结 Day 3 —— 图像增强与运算
图像处理·算法
田里的水稻34 分钟前
spline_curve
算法·几何学
X***C86242 分钟前
SpringMVC 请求参数接收
前端·javascript·算法
Bear on Toilet1 小时前
12 . 二叉树的直径
数据结构·算法·二叉树
惜.己1 小时前
数据结构与算法-数组异或操作
数据结构·算法
Dylan的码园1 小时前
ArrayList与顺序表
java·数据结构·链表