统一的人群计数训练框架(PyTorch)——基于主流的密度图模型训练框架

视频讲解1:Bilibili视频讲解

视频讲解2:https://www.douyin.com/video/7583893329385999667?count=10&cursor=0&enter_method=post&modeFrom=userPost&previous_page=personal_homepage&secUid=MS4wLjABAAAA0NVS_BfnZjuBUqHzrh-1oSxoNxExvuesrznu1Wu4-fc

代码下载:https://github.com/KeepTryingTo/CrowdCounting-framework-PyTorch

本项目主要是实现了一个人群计数框架,学习者可以直接一键使用该框架生成密度图数据集,并且该框架也给出了一些常见的损失函数实现,只需要直接加入即可使用。该框架最大的亮点是,学习者不需要去改变任何代码即可训练模型,如果学习者想要加入自己的模型,直接实现即可嵌入到该训练框架中。该框架帮助学习者不需要去关注除了核心部分之外的其他代码,帮助学习者更专心的相关算法。 并且还实现了采用分布式框架训练模型。其中有关该项目参考的其他开源代码已经在项目末尾给出了链接。

支持的功能

√\] 单GPU,CPU或者多GPU分布式训练 \[√\] 自定义标注框数据集生成密度图 \[√\] 一键生成常见数据集的密度图之后即可进行训练,比如ShangHai_partA, ShangHai_partB,NWPU,QNRF,UCF_CC_50,JHUC-CROWD++ \[√\] 提供了常用的默认backbone网络模型 \[√\] 提供了常用的损失函数 \[√\] 日志记录以及模型保存(保存最好结果模型) \[√\] 模型参数量以及flops统计 \[√\] 绘制结果MAE训练曲线 \[√\] 可视化真实的密度图npy以及可视化模型预测密度图 \[√\] 提供了常用的学习率调度器 \[√\] 统计GPU的使用情况 更多使用说明请看: [https://github.com/KeepTryingTo/CrowdCounting-framework-PyTorch/blob/main/zh_README.md](https://github.com/KeepTryingTo/CrowdCounting-framework-PyTorch/blob/main/zh_README.md "https://github.com/KeepTryingTo/CrowdCounting-framework-PyTorch/blob/main/zh_README.md") 参考链接 [人群计数中常用数据集的总结以及使用方式(Python/PyTorch)](https://mydreamambitious.blog.csdn.net/article/details/147144537?spm=1011.2415.3001.5331 "人群计数中常用数据集的总结以及使用方式(Python/PyTorch)") [论文CrowdCLIP(基于CLIP的无监督人群计数模型)详解(PyTorch,Pytorch_Lighting)](https://mydreamambitious.blog.csdn.net/article/details/147851355?spm=1011.2415.3001.5331 "论文CrowdCLIP(基于CLIP的无监督人群计数模型)详解(PyTorch,Pytorch_Lighting)") [论文The Effectiveness of a Simplified Model Structure for Crowd Counting(FFNet)详解](https://mydreamambitious.blog.csdn.net/article/details/141355068?spm=1011.2415.3001.5331 "论文The Effectiveness of a Simplified Model Structure for Crowd Counting(FFNet)详解") [论文Domain-General Crowd Counting in Unseen Scenarios(DCCUS)详解以及对应代码详解](https://mydreamambitious.blog.csdn.net/article/details/142730047?spm=1011.2415.3001.5331 "论文Domain-General Crowd Counting in Unseen Scenarios(DCCUS)详解以及对应代码详解") [论文Distribution Matching for Crowd Counting详解](https://mydreamambitious.blog.csdn.net/article/details/143133438?spm=1011.2415.3001.5331 "论文Distribution Matching for Crowd Counting详解") [论文Distribution Matching for Crowd Counting中人群统计损失(C Loss),最优化传输损失(OT Loss)以及总的变化损失(TV Loss)](https://mydreamambitious.blog.csdn.net/article/details/143219789?spm=1011.2415.3001.5331 "论文Distribution Matching for Crowd Counting中人群统计损失(C Loss),最优化传输损失(OT Loss)以及总的变化损失(TV Loss)") [论文CLIP-EBC(基于CLIP的人群统计模型)详解](https://mydreamambitious.blog.csdn.net/article/details/147819012?spm=1011.2415.3001.5331 "论文CLIP-EBC(基于CLIP的人群统计模型)详解") [论文CLIP-Count(基于文本指导的零样本目标计数)详解(PyTorch)](https://mydreamambitious.blog.csdn.net/article/details/147873916?spm=1011.2415.3001.5331 "论文CLIP-Count(基于文本指导的零样本目标计数)详解(PyTorch)") https://github.com/cvlab-stonybrook/DM-Count https://github.com/gjy3035/Awesome-Crowd-Counting https://github.com/gjy3035/C-3-Framework https://github.com/ZPDu/Domain-general-Crowd-Counting-in-Unseen-Scenarios https://github.com/openai/CLIP https://mydreamambitious.blog.csdn.net/article/details/142730047?spm=1011.2415.3001.5331 https://mydreamambitious.blog.csdn.net/article/details/147144537?spm=1011.2415.3001.5331 https://mydreamambitious.blog.csdn.net/article/details/143133438?spm=1011.2415.3001.5331 https://mydreamambitious.blog.csdn.net/article/details/143219789?spm=1011.2415.3001.5331 https://mydreamambitious.blog.csdn.net/article/details/144692297?spm=1011.2415.3001.5331 https://github.com/erdongsanshi/FFNet https://mydreamambitious.blog.csdn.net/article/details/141355068?spm=1011.2415.3001.5331 https://github.com/KeepTryingTo/PyTorch-DeepLearning-Visual-LLM https://github.com/KeepTryingTo https://blog.csdn.net/Keep_Trying_Go/article/details/154913403 https://mydreamambitious.blog.csdn.net/article/details/154789450?spm=1011.2415.3001.5331 https://mydreamambitious.blog.csdn.net/article/details/154443638?spm=1011.2415.3001.5331 https://mydreamambitious.blog.csdn.net/article/details/148124251?spm=1011.2415.3001.5331 https://mydreamambitious.blog.csdn.net/article/details/148300284?spm=1011.2415.3001.5331 https://mydreamambitious.blog.csdn.net/article/details/148227727?spm=1011.2415.3001.5331 https://mydreamambitious.blog.csdn.net/article/details/147873916?spm=1011.2415.3001.5331 https://mydreamambitious.blog.csdn.net/article/details/147851355?spm=1011.2415.3001.5331 https://mydreamambitious.blog.csdn.net/article/details/147819012?spm=1011.2415.3001.5331

相关推荐
程序员清洒8 分钟前
CANN模型安全:从对抗防御到隐私保护的全栈安全实战
人工智能·深度学习·安全
island131411 分钟前
CANN ops-nn 算子库深度解析:神经网络计算引擎的底层架构、硬件映射与融合优化机制
人工智能·神经网络·架构
小白|15 分钟前
CANN与实时音视频AI:构建低延迟智能通信系统的全栈实践
人工智能·实时音视频
Kiyra15 分钟前
作为后端开发你不得不知的 AI 知识——Prompt(提示词)
人工智能·prompt
艾莉丝努力练剑18 分钟前
实时视频流处理:利用ops-cv构建高性能CV应用
人工智能·cann
程序猿追18 分钟前
深度解析CANN ops-nn仓库 神经网络算子的性能优化与实践
人工智能·神经网络·性能优化
User_芊芊君子22 分钟前
CANN_PTO_ISA虚拟指令集全解析打造跨平台高性能计算的抽象层
人工智能·深度学习·神经网络
初恋叫萱萱25 分钟前
CANN 生态安全加固指南:构建可信、鲁棒、可审计的边缘 AI 系统
人工智能·安全
alvin_200525 分钟前
python之OpenGL应用(二)Hello Triangle
python·opengl
机器视觉的发动机30 分钟前
AI算力中心的能耗挑战与未来破局之路
开发语言·人工智能·自动化·视觉检测·机器视觉