统一的人群计数训练框架(PyTorch)——基于主流的密度图模型训练框架

视频讲解1:Bilibili视频讲解

视频讲解2:https://www.douyin.com/video/7583893329385999667?count=10&cursor=0&enter_method=post&modeFrom=userPost&previous_page=personal_homepage&secUid=MS4wLjABAAAA0NVS_BfnZjuBUqHzrh-1oSxoNxExvuesrznu1Wu4-fc

代码下载:https://github.com/KeepTryingTo/CrowdCounting-framework-PyTorch

本项目主要是实现了一个人群计数框架,学习者可以直接一键使用该框架生成密度图数据集,并且该框架也给出了一些常见的损失函数实现,只需要直接加入即可使用。该框架最大的亮点是,学习者不需要去改变任何代码即可训练模型,如果学习者想要加入自己的模型,直接实现即可嵌入到该训练框架中。该框架帮助学习者不需要去关注除了核心部分之外的其他代码,帮助学习者更专心的相关算法。 并且还实现了采用分布式框架训练模型。其中有关该项目参考的其他开源代码已经在项目末尾给出了链接。

支持的功能

√\] 单GPU,CPU或者多GPU分布式训练 \[√\] 自定义标注框数据集生成密度图 \[√\] 一键生成常见数据集的密度图之后即可进行训练,比如ShangHai_partA, ShangHai_partB,NWPU,QNRF,UCF_CC_50,JHUC-CROWD++ \[√\] 提供了常用的默认backbone网络模型 \[√\] 提供了常用的损失函数 \[√\] 日志记录以及模型保存(保存最好结果模型) \[√\] 模型参数量以及flops统计 \[√\] 绘制结果MAE训练曲线 \[√\] 可视化真实的密度图npy以及可视化模型预测密度图 \[√\] 提供了常用的学习率调度器 \[√\] 统计GPU的使用情况 更多使用说明请看: [https://github.com/KeepTryingTo/CrowdCounting-framework-PyTorch/blob/main/zh_README.md](https://github.com/KeepTryingTo/CrowdCounting-framework-PyTorch/blob/main/zh_README.md "https://github.com/KeepTryingTo/CrowdCounting-framework-PyTorch/blob/main/zh_README.md") 参考链接 [人群计数中常用数据集的总结以及使用方式(Python/PyTorch)](https://mydreamambitious.blog.csdn.net/article/details/147144537?spm=1011.2415.3001.5331 "人群计数中常用数据集的总结以及使用方式(Python/PyTorch)") [论文CrowdCLIP(基于CLIP的无监督人群计数模型)详解(PyTorch,Pytorch_Lighting)](https://mydreamambitious.blog.csdn.net/article/details/147851355?spm=1011.2415.3001.5331 "论文CrowdCLIP(基于CLIP的无监督人群计数模型)详解(PyTorch,Pytorch_Lighting)") [论文The Effectiveness of a Simplified Model Structure for Crowd Counting(FFNet)详解](https://mydreamambitious.blog.csdn.net/article/details/141355068?spm=1011.2415.3001.5331 "论文The Effectiveness of a Simplified Model Structure for Crowd Counting(FFNet)详解") [论文Domain-General Crowd Counting in Unseen Scenarios(DCCUS)详解以及对应代码详解](https://mydreamambitious.blog.csdn.net/article/details/142730047?spm=1011.2415.3001.5331 "论文Domain-General Crowd Counting in Unseen Scenarios(DCCUS)详解以及对应代码详解") [论文Distribution Matching for Crowd Counting详解](https://mydreamambitious.blog.csdn.net/article/details/143133438?spm=1011.2415.3001.5331 "论文Distribution Matching for Crowd Counting详解") [论文Distribution Matching for Crowd Counting中人群统计损失(C Loss),最优化传输损失(OT Loss)以及总的变化损失(TV Loss)](https://mydreamambitious.blog.csdn.net/article/details/143219789?spm=1011.2415.3001.5331 "论文Distribution Matching for Crowd Counting中人群统计损失(C Loss),最优化传输损失(OT Loss)以及总的变化损失(TV Loss)") [论文CLIP-EBC(基于CLIP的人群统计模型)详解](https://mydreamambitious.blog.csdn.net/article/details/147819012?spm=1011.2415.3001.5331 "论文CLIP-EBC(基于CLIP的人群统计模型)详解") [论文CLIP-Count(基于文本指导的零样本目标计数)详解(PyTorch)](https://mydreamambitious.blog.csdn.net/article/details/147873916?spm=1011.2415.3001.5331 "论文CLIP-Count(基于文本指导的零样本目标计数)详解(PyTorch)") https://github.com/cvlab-stonybrook/DM-Count https://github.com/gjy3035/Awesome-Crowd-Counting https://github.com/gjy3035/C-3-Framework https://github.com/ZPDu/Domain-general-Crowd-Counting-in-Unseen-Scenarios https://github.com/openai/CLIP https://mydreamambitious.blog.csdn.net/article/details/142730047?spm=1011.2415.3001.5331 https://mydreamambitious.blog.csdn.net/article/details/147144537?spm=1011.2415.3001.5331 https://mydreamambitious.blog.csdn.net/article/details/143133438?spm=1011.2415.3001.5331 https://mydreamambitious.blog.csdn.net/article/details/143219789?spm=1011.2415.3001.5331 https://mydreamambitious.blog.csdn.net/article/details/144692297?spm=1011.2415.3001.5331 https://github.com/erdongsanshi/FFNet https://mydreamambitious.blog.csdn.net/article/details/141355068?spm=1011.2415.3001.5331 https://github.com/KeepTryingTo/PyTorch-DeepLearning-Visual-LLM https://github.com/KeepTryingTo https://blog.csdn.net/Keep_Trying_Go/article/details/154913403 https://mydreamambitious.blog.csdn.net/article/details/154789450?spm=1011.2415.3001.5331 https://mydreamambitious.blog.csdn.net/article/details/154443638?spm=1011.2415.3001.5331 https://mydreamambitious.blog.csdn.net/article/details/148124251?spm=1011.2415.3001.5331 https://mydreamambitious.blog.csdn.net/article/details/148300284?spm=1011.2415.3001.5331 https://mydreamambitious.blog.csdn.net/article/details/148227727?spm=1011.2415.3001.5331 https://mydreamambitious.blog.csdn.net/article/details/147873916?spm=1011.2415.3001.5331 https://mydreamambitious.blog.csdn.net/article/details/147851355?spm=1011.2415.3001.5331 https://mydreamambitious.blog.csdn.net/article/details/147819012?spm=1011.2415.3001.5331

相关推荐
纪伊路上盛名在几秒前
如何为我们的GPU设备选择合适的CUDA版本和Torch版本?
pytorch·深度学习·torch·cuda·英伟达
小途软件4 分钟前
ssm327校园二手交易平台的设计与实现+vue
java·人工智能·pytorch·python·深度学习·语言模型
小咖自动剪辑5 分钟前
小咖批量剪辑助手:Windows 视频批量自动剪辑与混剪工具
人工智能·音视频·语音识别·实时音视频·视频编解码
京东零售技术7 分钟前
ACM Multimedia | 京东零售广告创意:统一的布局生成和评估模型
人工智能
阿东在coding8 分钟前
MCP Skill Subagent 实战指南
人工智能
房产中介行业研习社8 分钟前
嘉兴国商区2026年1月品质楼盘推荐
大数据·人工智能·房产直播技巧·房产直播培训
凤希AI伴侣13 分钟前
从组装工到超级个体:AI伴侣开发中的工具整合与体验优化
人工智能·凤希ai伴侣
倪某某16 分钟前
阿里云ECS GPU部署WAN2.2
人工智能·阿里云·云计算
MQLYES25 分钟前
03-BTC-数据结构
数据结构·算法·哈希算法
InfiSight智睿视界32 分钟前
连锁店管理力不从心?让智能体接管30%重复工作
人工智能·智能巡检系统·ai巡检