基于鹈鹕优化的LSTM深度学习网络模型(POA-LSTM)的一维时间序列预测算法matlab仿真

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.部分程序

4.算法理论概述

阶段1:全局+局部搜索(俯冲捕食)

阶段2:弱解替换(群体协作)

5.完整程序


1.程序功能描述

LSTM网络的性能高度依赖于超参数配置,其中隐含层个数是影响模型性能的关键超参数之一。传统的超参数优化方法如网格搜索、随机搜索存在效率低、易陷入局部最优等问题。鹈鹕优化是一种新型元启发式优化算法,其核心是用鹈鹕优化算法(Pelican Optimization Algorithm, POA)自适应搜索LSTM隐含层最优神经元数量,以最小化时间序列预测误差。

2.测试软件版本以及运行结果展示

MATLAB2022A/MATLAB2024B版本运行

3.部分程序

复制代码
...................................................................
Destination_position=BestSol.Position;
% 将优化得到的最佳参数转换为整数,作为LSTM隐藏层神经元数量
% 加1是为了确保至少有1个神经元
NN=floor(Destination_position)+1;
% 设置网络训练参数
options = trainingOptions('adam', ...    % 使用Adam优化器,适合深度学习训练
    'MaxEpochs', 240, ...                % 最大训练轮数为240
    'GradientThreshold', 1, ...          % 梯度阈值为1,防止梯度爆炸
    'InitialLearnRate', 0.004, ...       % 初始学习率为0.004
    'LearnRateSchedule', 'piecewise', ...% 学习率调度方式为分段衰减
    'LearnRateDropPeriod', 60, ...       % 每60轮衰减一次学习率
    'LearnRateDropFactor',0.2, ...       % 学习率衰减因子为0.2(变为原来的20%)
    'L2Regularization', 0.01, ...        % L2正则化系数为0.01,防止过拟合
    'ExecutionEnvironment', 'gpu',...    % 使用GPU加速训练(需配置GPU支持)
    'Verbose', 0, ...                    % 不显示训练过程细节
    'Plots', 'training-progress');       % 显示训练进度图表(损失变化等)

% 训练LSTM网络
[net,INFO] = trainNetwork(Pxtrain, Txtrain, layers, options);

% 使用训练好的网络进行预测
Dat_yc1  = predict(net, Pxtrain);  % 对训练数据进行预测(归一化尺度)
Dat_yc2  = predict(net, Pxtest);   % 对测试数据进行预测(归一化尺度)
 
% 将预测结果反归一化,恢复到原始数据范围
Datn_yc1 = mapminmax('reverse', Dat_yc1, Norm_O); 
Datn_yc2 = mapminmax('reverse', Dat_yc2, Norm_O); 

% 将细胞数组转换为矩阵(方便后续处理和分析)
Datn_yc1 = cell2mat(Datn_yc1);
Datn_yc2 = cell2mat(Datn_yc2);

% 保存训练信息、预测结果和收敛曲线到MAT文件,便于后续分析
save R2.mat INFO Datn_yc1 Datn_yc2 T_train T_test Convergence_curve
126

4.算法理论概述

POA-LSTM的核心是用鹈鹕优化算法(Pelican Optimization Algorithm, POA)自适应搜索LSTM隐含层最优神经元数量,以最小化时间序列预测误差。

整体流程为:

数据预处理→POA优化LSTM超参数→训练优化后的LSTM→预测与结果反归一化

阶段1:全局+局部搜索(俯冲捕食)

1.搜索步长系数PK(随迭代衰减,平衡全局/局部搜索)

其中it为当前迭代次数,PK随it增大而递减(前期大步全局探索,后期小步局部细化)。

2.个体适应度比例Pei(区分优劣解)

其中Costi为第i个个体的适应度(LSTM预测误差), Costmin/Costmax为当前种群的最小/最大误差。Pei越大,说明个体越差,越倾向全局搜索;反之越倾向局部搜索。

3.位置更新公式

4.边界约束

阶段2:弱解替换(群体协作)

1.替换概率Pt

Pt随迭代次数动态变化,控制弱解替换的概率。

2.弱解替换公式

若rand<Pt

将种群按适应度升序排序,删除最后Ne个最差解; 围绕全局最优解生成新解,公式为:

Xnew=X best+rand(1,D)⋅rand(LB,UB)

将新解加入种群,保持种群规模为N 。

3.适应度函数

优化目标是最小化LSTM测试集预测误差,核心公式为:

5.完整程序

VVV

关注后手机上输入程序码:129

相关推荐
UnderTurrets18 分钟前
A_Survey_on_3D_object_Affordance
pytorch·深度学习·计算机视觉·3d
koo36420 分钟前
pytorch深度学习笔记13
pytorch·笔记·深度学习
高洁0123 分钟前
CLIP 的双编码器架构是如何优化图文关联的?(3)
深度学习·算法·机器学习·transformer·知识图谱
jllllyuz29 分钟前
MATLAB实现蜻蜓优化算法
开发语言·算法·matlab
yyy(十一月限定版)1 小时前
初始matlab
开发语言·matlab
listhi5201 小时前
基于MATLAB的支持向量机(SVM)医学图像分割方法
开发语言·matlab
lambo mercy1 小时前
无监督学习
人工智能·深度学习
柠柠酱2 小时前
【深度学习Day4】告别暴力拉平!MATLAB老鸟带你拆解CNN核心:卷积与池化 (附高频面试考点)
深度学习
向量引擎小橙2 小时前
推理革命与能耗:AI大模型应用落地的“冰山成本”与破局之路
大数据·人工智能·深度学习·集成学习
rayufo2 小时前
深度学习对三维图形点云数据分类
人工智能·深度学习·分类