贝叶斯优化Transformer-LSTM的模型结构图


1. 数据预处理与特征工程

在进入模型之前,必须将原始数据转化为适合混合架构的格式。

  • 归一化 (Normalization):对时间序列数据进行 Min-Max 缩放或 Z-Score 标准化,以加快收敛。
  • 滑动窗口拆分 (Sliding Window):将长序列切割成固定长度的输入块 (过去的时间步)和标签 (预测的时间步)。
  • 维度转换 :调整张量形状以符合 Transformer 的输入要求,通常为 [batch_size, seq_len, input_dim]

2. 构建 Transformer-LSTM 混合骨架

搭建我们在前一张图中看到的模型结构。

  • Transformer 层:通过多头注意力提取全局特征。
  • LSTM 层:接收 Transformer 的输出,捕捉短期时序依赖。
  • 全连接输出层:映射到最终的预测维度。

3. 定义超参数搜索空间 (Search Space)

这是贝叶斯优化的关键。你需要确定哪些参数对性能影响最大,例如:

  • Transformer 参数:Head 数量、Layer 数量、Dropout 率。
  • LSTM 参数:Hidden Units(隐藏单元数)。
  • 优化参数:学习率 (Learning Rate)、Batch Size。

4. 贝叶斯优化核心循环

贝叶斯优化不同于随机搜索,它通过"学习"之前的经验来寻找最优解。

其具体执行步骤如下:

  1. 定义目标函数 (Objective Function):输入一套超参数,运行模型训练,并返回验证集上的损失(如 RMSE 或 MAE)。
  2. 构建代理模型 (Surrogate Model) :通常使用高斯过程 (Gaussian Process)TPE (Tree-structured Parzen Estimator)。它会建立超参数与模型表现之间的概率模型。
  3. 采集函数 (Acquisition Function):利用策略(如期望改善 EI)决定下一步测试哪组参数,平衡"探索"(尝试新领域)与"利用"(深挖已知优秀领域)。
  4. 迭代更新
  • BO 建议一组参数 训练模型 获取 Loss 更新代理模型。

5. 最佳模型训练与验证

当达到设定的迭代次数或收敛后:

  • 提取最优参数:获取 BO 找到的最佳参数组合。
  • 重新训练:使用全量训练集和这组最优参数训练最终模型。
  • 测试评估:在完全未见的测试集上评估模型的泛化能力。

实现步骤总结表

阶段 核心任务 常用工具
数据层 清洗、滑动窗口、归一化 Pandas, Scikit-learn
模型层 Transformer + LSTM 堆叠 PyTorch, TensorFlow
优化层 建立代理模型,定义概率分布 Optuna, Hyperopt, Scikit-Optimize
输出层 性能评估、可视化预测结果 Matplotlib, Seaborn
相关推荐
知乎的哥廷根数学学派1 小时前
基于多模态特征融合和可解释性深度学习的工业压缩机异常分类与预测性维护智能诊断(Python)
网络·人工智能·pytorch·python·深度学习·机器学习·分类
梦梦代码精3 小时前
《全栈开源智能体:终结企业AI拼图时代》
人工智能·后端·深度学习·小程序·前端框架·开源·语音识别
kebijuelun4 小时前
FlashInfer-Bench:把 AI 生成的 GPU Kernel 放进真实 LLM 系统的“闭环引擎”
人工智能·gpt·深度学习·机器学习·语言模型
Dev7z6 小时前
基于LSTM与集成学习融合的光伏发电功率预测系统设计与实现(MATLAB实现)
lstm·集成学习融合·光伏发电功率预测
亚里随笔6 小时前
超越LoRA:参数高效强化学习方法的全面评估与突破
人工智能·深度学习·机器学习·lora·rl
雍凉明月夜7 小时前
深度学习之目标检测yolo算法Ⅱ(v4)
深度学习·算法·yolo·目标检测
一瞬祈望7 小时前
⭐ 深度学习入门体系(第 20 篇): 如何从 0 到 1 训练一个稳定、可复现的深度学习模型
人工智能·深度学习
燕双嘤8 小时前
深度学习:激活函数,优化器
人工智能·深度学习
HyperAI超神经8 小时前
实现高选择性底物设计,MIT联手哈佛用生成式AI发现全新蛋白酶切割模式
人工智能·深度学习·机器学习·开源·ai编程
山土成旧客9 小时前
【Python学习打卡-Day42】打开深度学习“黑箱”:从Hook回调到Grad-CAM可视化
python·深度学习·学习