贝叶斯优化Transformer-LSTM的模型结构图


1. 数据预处理与特征工程

在进入模型之前,必须将原始数据转化为适合混合架构的格式。

  • 归一化 (Normalization):对时间序列数据进行 Min-Max 缩放或 Z-Score 标准化,以加快收敛。
  • 滑动窗口拆分 (Sliding Window):将长序列切割成固定长度的输入块 (过去的时间步)和标签 (预测的时间步)。
  • 维度转换 :调整张量形状以符合 Transformer 的输入要求,通常为 [batch_size, seq_len, input_dim]

2. 构建 Transformer-LSTM 混合骨架

搭建我们在前一张图中看到的模型结构。

  • Transformer 层:通过多头注意力提取全局特征。
  • LSTM 层:接收 Transformer 的输出,捕捉短期时序依赖。
  • 全连接输出层:映射到最终的预测维度。

3. 定义超参数搜索空间 (Search Space)

这是贝叶斯优化的关键。你需要确定哪些参数对性能影响最大,例如:

  • Transformer 参数:Head 数量、Layer 数量、Dropout 率。
  • LSTM 参数:Hidden Units(隐藏单元数)。
  • 优化参数:学习率 (Learning Rate)、Batch Size。

4. 贝叶斯优化核心循环

贝叶斯优化不同于随机搜索,它通过"学习"之前的经验来寻找最优解。

其具体执行步骤如下:

  1. 定义目标函数 (Objective Function):输入一套超参数,运行模型训练,并返回验证集上的损失(如 RMSE 或 MAE)。
  2. 构建代理模型 (Surrogate Model) :通常使用高斯过程 (Gaussian Process)TPE (Tree-structured Parzen Estimator)。它会建立超参数与模型表现之间的概率模型。
  3. 采集函数 (Acquisition Function):利用策略(如期望改善 EI)决定下一步测试哪组参数,平衡"探索"(尝试新领域)与"利用"(深挖已知优秀领域)。
  4. 迭代更新
  • BO 建议一组参数 训练模型 获取 Loss 更新代理模型。

5. 最佳模型训练与验证

当达到设定的迭代次数或收敛后:

  • 提取最优参数:获取 BO 找到的最佳参数组合。
  • 重新训练:使用全量训练集和这组最优参数训练最终模型。
  • 测试评估:在完全未见的测试集上评估模型的泛化能力。

实现步骤总结表

阶段 核心任务 常用工具
数据层 清洗、滑动窗口、归一化 Pandas, Scikit-learn
模型层 Transformer + LSTM 堆叠 PyTorch, TensorFlow
优化层 建立代理模型,定义概率分布 Optuna, Hyperopt, Scikit-Optimize
输出层 性能评估、可视化预测结果 Matplotlib, Seaborn
相关推荐
zy_destiny22 分钟前
【工业场景】用YOLOv26实现桥梁检测
人工智能·深度学习·yolo·机器学习·计算机视觉·目标跟踪
power 雀儿1 小时前
Transformer输入嵌入与绝对位置编码
人工智能·深度学习·transformer
薛不痒1 小时前
深度学习的补充:神经网络处理回归问题(人脸关键点识别)&自然语言处理的介绍
深度学习·神经网络·回归
攒了一袋星辰2 小时前
Transformer词向量与自注意力机制
人工智能·深度学习·transformer
觉醒大王3 小时前
科研新手如何读文献?从“乱读”到“会读”
论文阅读·笔记·深度学习·学习·自然语言处理·学习方法
觉醒大王3 小时前
硕士/博士研究生避坑指南
笔记·深度学习·学习·自然语言处理·职场和发展·学习方法
咚咚王者3 小时前
人工智能之核心技术 深度学习 第八章 数据预处理与增强
人工智能·深度学习
zy_destiny4 小时前
【工业场景】用YOLOv26实现4种输电线隐患检测
人工智能·深度学习·算法·yolo·机器学习·计算机视觉·输电线隐患识别
雍凉明月夜4 小时前
深度学习之目标检测yolo算法Ⅴ-YOLOv8
深度学习·yolo·目标检测
2501_941652774 小时前
改进YOLOv5-BiFPN-SDI实现牙齿龋齿检测与分类_深度学习_计算机视觉_原创
深度学习·yolo·分类