【完整源码+数据集】道路拥塞数据集,yolo道路拥塞检测数据集 8921 张,交通拥堵识别数据集,路口拥塞识别系统实战教程

文章前瞻:优质数据集与检测系统精选

点击链接:************更多数据集与系统目录清单****************

数据集与检测系统 数据集与检测系统
基于深度学习的道路积水检测系统 基于深度学习的道路垃圾检测系统
基于深度学习的道路裂缝检测系统 基于深度学习的道路交通事故检测系统
基于深度学习的道路病害检测系统 基于深度学习的道路积雪结冰检测系统
基于深度学习的汽车车牌检测系统 基于深度学习的井盖丢失破损检测系统
基于深度学习的行人车辆检测系统 基于深度学习的航拍行人检测系统
基于深度学习的车辆分类检测系统 基于深度学习的电动车头盔佩戴检测系统
基于深度学习的交通信号灯检测系统 基于深度学习的共享单车违停检测系统
基于深度学习的摆摊占道经营检测系统 基于深度学习的人员游泳溺水检测系统
基于深度学习的航拍水面垃圾检测系统 基于深度学习的水面垃圾检测系统
基于深度学习的水面船舶分类检测系统 基于深度学习的海洋垃圾检测系统
基于深度学习的救生衣穿戴检测系统 基于深度学习的海洋生物检测系统
基于深度学习的人员吸烟检测系统 基于深度学习的口罩佩戴检测系统
基于深度学习的烟雾和火灾检测系统 基于深度学习的人员睡岗玩手机检测系统
基于深度学习的人员摔倒检测系统 基于深度学习的人员姿势检测系统(站坐躺摔倒)
基于深度学习的工地安全穿戴检测系统 基于深度学习的安全帽检测系统
基于深度学习的反光背心穿戴检测系统 基于深度学习的吸烟玩手机行为检测系统
基于深度学习的武器刀具检测系统 基于深度学习的工地工程车检测系统
基于深度学习的人体手势检测系统 基于深度学习的消防灭火器检测系统
基于深度学习的人员高空作业检测系统 基于深度学习的水果分类检测系统
基于深度学习的农作物病害检测系统 基于深度学习的水稻病害检测系统
基于深度学习的害虫检测系统 基于深度学习的蓝莓成熟度检测系统
基于深度学习的草莓成熟度检测系统 基于深度学习的食品分类检测系统
基于深度学习的光伏板缺陷检测系统 基于深度学习的航拍光伏板检测系统
基于深度学习的建筑垃圾废料检测系统 基于深度学习的可回收/不可回收垃圾检测系统
基于深度学习的垃圾分类检测系统 基于深度学习的猪只行为动作检测系统
基于深度学习的动物分类检测系统 基于深度学习的明厨亮灶鼠患检测系统
基于深度学习的猫狗分类检测系统 基于深度学习的服饰分类检测系统
基于深度学习的家具分类检测系统 基于深度学习的学生课堂行为检测系统
基于深度学习的树木倒塌检测系统 基于深度学习的电线杆杂物检测系

一、交通拥堵识别数据集介绍

【数据集】yolo交通拥堵检测数据集 8921 张 ,目标检测,包含YOLO/VOC格式标注,训练、验证、测试集已划分

数据集中标签包含2种分类names = ['0', '1'] ,分别代表交通拥堵与疏松

检测场景为城市道路、乡镇道路、高速公路、十字路口、园区等场景 ,可用于提升交通网络运行效率、保障出行安全、优化城市交通生态等。

文章底部名片或主页私信获取数据集和系统~

1、数据概述

交通拥堵识别的重要性

首先,保障交通运行安全是首要意义。拥堵状态下车辆高密度聚集、车速缓慢,易引发追尾、剐蹭等交通事故。YOLO算法可实时监测车流密度、车辆行驶状态,提前识别拥堵萌芽态势,为交通管控部门争取预警与疏导时间,从源头降低事故风险。其次,提升交通管理科学性。传统拥堵识别难以精准定位拥堵核心区域、判断拥堵等级与蔓延趋势,导致管控措施缺乏针对性。YOLO算法可量化提取交通流参数,形成全面的拥堵态势数据,助力管理者精准研判拥堵成因,制定差异化管控策略。最后,弥补传统监测短板。人工观测受人力、视野限制,难以覆盖全域道路;固定传感器易受天气、地形影响,监测稳定性不足。YOLO可搭载于监控摄像头、无人机、车载设备等多平台,实现全天候、全路段动态监测,大幅提升拥堵识别的覆盖范围与可靠性。

基于YOLO的道路拥塞检测系统

在城市道路交通管控中,YOLO拥堵识别系统可与城市智慧交通平台对接,实时监测主干道、交叉路口等核心区域的交通状态。一旦识别到拥堵,系统可自动触发信号配时优化,或向交通管理人员推送预警信息,引导现场疏导,缩短拥堵持续时间,保障城市交通顺畅。在高速公路运维场景中,YOLO的实时检测能力可适配高速车流特性,快速识别因交通事故、车流激增引发的拥堵,同步向管控中心与过往车辆推送预警信息,引导车辆分流,避免拥堵范围扩大。

此外,在公共交通调度领域,YOLO识别的拥堵数据可支撑公交动态调度,通过调整发车间隔、优化行驶路线,提升公交运行效率与吸引力;在交通规划环节,长期积累的拥堵数据可助力研判道路通行瓶颈,为道路扩建、路网优化等规划工作提供精准数据支撑。在应急交通保障中,可快速识别拥堵区域,为救援车辆开辟绿色通道提供路径规划依据,提升应急响应效率。

综上,基于YOLO实现交通拥堵识别,有效破解了传统拥堵监测的滞后性与局限性,通过技术赋能推动交通管理从"被动处置"向"主动预警、精准管控"转型,对提升交通网络运行效率、保障出行安全、优化城市交通生态具有不可替代的作用,在智慧交通建设领域拥有广阔的应用前景。

该数据集含有 8921 张图片,包含Pascal VOC XML 格式和YOLO TXT 格式,用于训练和测试城市道路、乡镇道路、高速公路、十字路口、园区等场景进行道路拥堵识别

图片格式为jpg格式,标注格式分别为:

YOLO:txt

VOC:xml

数据集均为手工标注,保证标注精确度。

2、数据集文件结构

Congestion/

------test/

------------Annotations/

------------images/

------------labels/

------train/

------------Annotations/

------------images/

------------labels/

------valid/

------------Annotations/

------------images/

------------labels/

------data.yaml

  • 该数据集已划分训练集样本,分别是:test 目录(测试集)、train 目录(训练集)、valid目录(验证集);
  • Annotations文件夹为Pascal VOC格式的XML文件
  • images文件夹为jpg格式的数据样本;
  • labels文件夹是YOLO格式的TXT文件;
  • data.yaml是数据集配置文件,包含道路拥堵检测的目标分类和加载路径。

​​​

Annotations目录下的xml文件内容如下:

XML 复制代码
<annotation>
	<folder></folder>
	<filename>image_28_jpg.rf.9a0415d9e43ba2e6bc460cb8fd166c56.jpg</filename>
	<path>image_28_jpg.rf.9a0415d9e43ba2e6bc460cb8fd166c56.jpg</path>
	<source>
		<database>Congestion</database>
	</source>
	<size>
		<width>640</width>
		<height>640</height>
		<depth>3</depth>
	</size>
	<segmented>0</segmented>
	<object>
		<name>0</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<occluded>0</occluded>
		<bndbox>
			<xmin>63</xmin>
			<xmax>241</xmax>
			<ymin>161</ymin>
			<ymax>311</ymax>
		</bndbox>
	</object>
	<object>
		<name>0</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<occluded>0</occluded>
		<bndbox>
			<xmin>131</xmin>
			<xmax>596</xmax>
			<ymin>332</ymin>
			<ymax>605</ymax>
		</bndbox>
	</object>
	<object>
		<name>0</name>
		<pose>Unspecified</pose>
		<truncated>0</truncated>
		<difficult>0</difficult>
		<occluded>0</occluded>
		<bndbox>
			<xmin>259</xmin>
			<xmax>585</xmax>
			<ymin>122</ymin>
			<ymax>316</ymax>
		</bndbox>
	</object>
</annotation>

labels目录下的txt文件内容如下:

bash 复制代码
0 0.5671875 0.32109375 0.3140625 0.2140625
0 0.5078125 0.65546875 0.63984375 0.396875

3、数据集适用范围

  • 目标检测 场景,监控 识别,无人机识别
  • yolo训练模型或其他模型
  • 城市道路、乡镇道路、高速公路、十字路口、园区等场景
  • 可用于提升交通网络运行效率、保障出行安全、优化城市交通生态等

4、数据集标注结果

​​​​​​​​

​​​​​​​​

4.1、数据集内容

  1. 场景视角:无人机视觉数据样本、监控视角数据样本,车辆视角数据样本
  2. 标注内容:['0', '1'] ,总计2个分类;
  3. 图片总量:8921张图片数据;
  4. 标注类型:含有Pascal VOC XML 格式和yol o TXT格式;

5、训练过程

5.1、导入训练数据

下载YOLOv8项目压缩包,解压在任意本地workspace文件夹中。

下载YOLOv8预训练模型,导入到ultralytics-main项目根目录下。

ultralytics-main 项目根目录下,创建data文件夹,并在data文件夹下创建子文件夹:Annotations、images、imageSets、labels, 其中,将pascal VOC格式的XML文件 手动导入到Annotations文件夹中,将JPG格式的图像数据导入到images文件夹中,imageSets和labels两个文件夹不导入数据。

data目录结构如下:

data/

------Annotations/ //存放xml文件

------images/ //存放jpg图像

------imageSets/

------labels/

整体项目结构如下所示:

​​​​

5.2、数据分割

首先在ultralytics-main目录下创建一个split_train_val.py文件,运行文件之后会在imageSets文件夹下将数据集划分为训练集train.txt、验证集val.txt、测试集test.txt,里面存放的就是用于训练、验证、测试的图片名称。

python 复制代码
import os
import random

trainval_percent = 0.9
train_percent = 0.9
xmlfilepath = 'data/Annotations'
txtsavepath = 'data/ImageSets'
total_xml = os.listdir(xmlfilepath)

num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)

ftrainval = open('data/ImageSets/trainval.txt', 'w')
ftest = open('data/ImageSets/test.txt', 'w')
ftrain = open('data/ImageSets/train.txt', 'w')
fval = open('data/ImageSets/val.txt', 'w')

for i in list:
    name = total_xml[i][:-4] + '\n'
    if i in trainval:
        ftrainval.write(name)
        if i in train:
            ftrain.write(name)
        else:
            fval.write(name)
    else:
        ftest.write(name)

ftrainval.close()
ftrain.close()
fval.close()
ftest.close()

5.3、数据集格式化处理

在ultralytics-main目录下创建一个voc_label.py文件,用于处理图像标注数据,将其从XML格式(通常用于Pascal VOC数据集)转换为YOLO格式。

convert_annotation函数

  • 这个函数读取一个图像的XML标注文件,将其转换为YOLO格式的文本文件。

  • 它打开XML文件,解析树结构,提取图像的宽度和高度。

  • 然后,它遍历每个目标对象(object),检查其类别是否在classes列表中,并忽略标注为困难(difficult)的对象。

  • 对于每个有效的对象,它提取边界框坐标,进行必要的越界修正,然后调用convert函数将坐标转换为YOLO格式。

  • 最后,它将类别ID和归一化后的边界框坐标写入一个新的文本文件

python 复制代码
import xml.etree.ElementTree as ET
import os
from os import getcwd

sets = ['train', 'val', 'test']
classes = ['0', '1'] # 根据标签名称填写类别
abs_path = os.getcwd()
print(abs_path)


def convert(size, box):
    dw = 1. / (size[0])
    dh = 1. / (size[1])
    x = (box[0] + box[1]) / 2.0 - 1
    y = (box[2] + box[3]) / 2.0 - 1
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return x, y, w, h


def convert_annotation(image_id):
    in_file = open('data/Annotations/%s.xml' % (image_id), encoding='UTF-8')
    out_file = open('data/labels/%s.txt' % (image_id), 'w')
    tree = ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)
    for obj in root.iter('object'):
        difficult = obj.find('difficult').text
        cls = obj.find('name').text
        if cls not in classes or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text),
             float(xmlbox.find('xmax').text),
             float(xmlbox.find('ymin').text),
             float(xmlbox.find('ymax').text))
        b1, b2, b3, b4 = b
        # 标注越界修正
        if b2 > w:
            b2 = w
        if b4 > h:
            b4 = h
        b = (b1, b2, b3, b4)
        bb = convert((w, h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')


wd = getcwd()
for image_set in sets:
    if not os.path.exists('data/labels/'):
        os.makedirs('data/labels/')
    image_ids = open('data/ImageSets/%s.txt' % (image_set)).read().strip().split()
    list_file = open('data/%s.txt' % (image_set), 'w')
    for image_id in image_ids:
        list_file.write(abs_path + '/data/images/%s.jpg\n' % (image_id))
        convert_annotation(image_id)
    list_file.close()

5.4、修改数据集配置文件

在ultralytics-main目录下创建一个data.yaml文件

python 复制代码
train: data/train.txt
val: data/val.txt
test: data/test.txt

nc: 2
names = ['0', '1']

5.5、执行命令

执行train.py

python 复制代码
model = YOLO('yolov8s.pt')
results = model.train(data='data.yaml', epochs=200, imgsz=640, batch=16, workers=0)

也可以在终端执行下述命令:

bash 复制代码
yolo train data=data.yaml model=yolov8s.pt epochs=200 imgsz=640 batch=16 workers=0 device=0

5.6、模型预测

你可以选择新建predict.py预测脚本文件,输入视频流或者图像进行预测。

代码如下:

python 复制代码
import cv2
from ultralytics import YOLO

# Load the YOLOv8 model
model = YOLO("./best.pt") # 自定义预测模型加载路径

# Open the video file
video_path = "./demo.mp4" # 自定义预测视频路径
cap = cv2.VideoCapture(video_path) 

# Get the video properties
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)

# Define the codec and create VideoWriter object
fourcc = cv2.VideoWriter_fourcc(*'mp4v')  # Be sure to use lower case
out = cv2.VideoWriter('./outputs.mp4', fourcc, fps, (frame_width, frame_height)) # 自定义输出视频路径

# Loop through the video frames
while cap.isOpened():
    # Read a frame from the video
    success, frame = cap.read()

    if success:
        # Run YOLOv8 inference on the frame
        # results = model(frame)
        results = model.predict(source=frame, save=True, imgsz=640, conf=0.5)

        results[0].names[0] = "自行修改中文名称"
        # Visualize the results on the frame
        annotated_frame = results[0].plot()

        # Write the annotated frame to the output file
        out.write(annotated_frame)

        # Display the annotated frame (optional)
        cv2.imshow("YOLOv8 Inference", annotated_frame)

        # Break the loop if 'q' is pressed
        if cv2.waitKey(1) & 0xFF == ord("q"):
            break
    else:
        # Break the loop if the end of the video is reached
        break

# Release the video capture and writer objects
cap.release()
out.release()
cv2.destroyAllWindows()

图片推理,代码如下:

python 复制代码
import warnings

warnings.filterwarnings('ignore')
from ultralytics import YOLO

if __name__ == '__main__':
    model = YOLO('models/best.pt')
    model.predict(source='test_pic',
                  imgsz=640,
                  save=True,
                  conf=0.25
                  )

也可以直接在命令行窗口或者Annoconda终端输入以下命令进行模型预测:

python 复制代码
yolo predict model="best.pt" source='demo.jpg'

6、获取数据集

文章底部名片或主页私信获取数据集或检测系统~

二、YOLO道路拥堵检测系统

1、功能介绍

1. 模型管理

支持自定义上传模型文件,一键加载所选模型,基于 YOLO 框架进行推理。

2. 图片检测

  • 支持上传本地图片文件,自动完成格式校验。

  • 对上传图片进行目标检测,检测结果以带有边框和标签的图片形式返回并展示。

  • 检测结果可下载保存。

3. 视频检测与实时流

  • 支持上传本地视频文件,自动完成格式校验。

  • 对视频逐帧检测,检测结果通过 MJPEG 流实时推送到前端页面,用户可边看边等。

  • 支持摄像头实时检测(如有接入摄像头)。

4. 置信度阈值调节

  • 前端可实时调整检测置信度阈值,动态影响检测结果。

  • 阈值调整后,后端推理自动应用新阈值,无需重启。

5. 日志与状态反馈

  • 前端集成日志区,实时显示模型加载、推理、文件上传等操作的进度与结果。

  • 检测异常、错误信息及时反馈,便于排查。

  • 一键清空日志,笔面长期占用内存。

​​​​ ​​​​​​​​​​​​​​

2、创建环境并安装依赖:

bash 复制代码
conda create -n ultralytics-env python=3.10
conda activate ultralytics-env
pip install -r requirements.txt

3、启动项目

bash 复制代码
python app.py

**打开浏览器访问:**http://localhost:5000

4、效果展示

4.1、推理效果

(以中药材检测为例)

​ ​​​​​​​

4.2、日志文本框

4.3、摄像头检测

(以中药材检测为例)

5、前端核心页面代码

html 复制代码
<!doctype html>
<html lang="zh-CN">

<head>
    <meta charset="utf-8">
    <meta name="viewport" content="width=device-width,initial-scale=1">
    <title>视觉检测系统 - Web UI</title>
    <link rel="stylesheet" href="/static/style.css">
    <link rel="icon" href="/favicon.ico">
</head>

<body>
    <div class="container main-flex">
        <!-- 左侧内容区 -->
        <div class="left-content">
            <header>
                <h1>YOLO交通拥堵检测系统</h1>
                <div id="currentModelDisplay" class="modelDisplay" title="当前模型">当前模型:未上传模型</div>
            </header>
            <main>
                <div class="videoPanel">
                    <div class="pane">
                        <h3>原图 / 视频</h3>
                        <div class="preview" id="srcPreview">预览区</div>
                    </div>
                    <div class="pane">
                        <h3>检测结果</h3>
                        <div class="preview" id="detPreview">检测结果</div>
                    </div>
                </div>
                <section class="logArea">
                    <div class="logHeader">
                        <h3>日志</h3>
                    </div>
                    <div class="logInner">
                        <div id="logs" class="logs"></div>
                    </div>
                </section>
            </main>
        </div>
        <!-- 右侧按钮栏 -->
        <aside class="right-bar">
            <!-- 1. 模型上传/加载区 -->
            <section class="model-section">
                <button id="uploadModelBtn" class="ghost">上传模型
                    <input id="modelFileInput" type="file" accept=".pt" title="选择 .pt 模型文件">
                </button>
                <button id="loadModel">加载模型</button>
            </section>

            <!-- 2. 检测方式选择区 -->
            <section class="detect-mode-section">
                <div class="detect-mode-title">请选择检测方式</div>
                <div class="detect-mode-radio-group">
                    <label><input type="radio" name="detectMode" value="upload" checked> 图片/视频</label>
                    <label><input type="radio" name="detectMode" value="camera"> 摄像头</label>
                </div>
                <div id="detectModeUpload" class="detect-mode-panel">
                    <div class="uploaded-file-name">
                        <span id="uploadedFileName" class="placeholder">未选择文件</span>
                    </div>
                    <div style="height: 22px;"></div>
                    <button id="uploadBtn">上传文件
                        <input id="fileInput" type="file" accept="image/*,video/*" title="上传图片或视频" aria-label="上传图片或视频">
                    </button>
                </div>
                <div id="detectModeCamera" class="detect-mode-panel" style="display:none;">
                    <button id="cameraDetectBtn" class="ghost">开启摄像头</button>
                    <div id="cameraPreview" class="camera-preview">
                        <video id="localCameraVideo" autoplay muted playsinline></video>
                        <div class="camera-controls">
                            <button id="stopCameraBtn" class="ghost">关闭摄像头</button>
                        </div>
                    </div>
                </div>
                <div class="confWrap">
                    <label class="conf">置信度
                        <input id="confRange" type="range" min="0.01" max="0.99" step="0.01" value="0.5">
                        <input id="confValue" type="number" min="0.01" max="0.99" step="0.01" value="0.5">
                    </label>
                </div>
            </section>

            <!-- 3. 操作按钮区 -->
            <section class="action-btn-section">
                <button id="startBtn" disabled class="start">开始检测</button>
                <button id="stopBtn" disabled class="stop">停止</button>
                <button id="clearLogs" class="ghost">清空日志</button>
            </section>
        </aside>
    </div>
    <script src="/static/app.js"></script>
</body>

</html>

6、代码获取

文章底部名片或私信获取系统源码和数据集~

更多数据集请查看置顶博文。

以上内容均为原创。

相关推荐
leoufung2 小时前
LeetCode 64. Minimum Path Sum 动态规划详解
算法·leetcode·动态规划
一起养小猫2 小时前
LeetCode100天Day7-移动零与搜索插入位置
数据结构·算法·leetcode·指针
ullio2 小时前
div1+2. 2178E - Flatten or Concatenate
算法
yu_anan1112 小时前
PPO/GRPO算法在RLHF中的实现
算法
leoufung2 小时前
Word Break:深度理解 DP 前缀结束点的核心思想
算法·word·动态规划
点灯小铭2 小时前
基于单片机与WiFi通信的教室人数与照明上位机监控系统设计
单片机·嵌入式硬件·毕业设计·课程设计·期末大作业
Aaron15882 小时前
三种主流接收机架构(超外差、零中频、射频直采)对比及发展趋势浅析
c语言·人工智能·算法·fpga开发·架构·硬件架构·信号处理
不错就是对3 小时前
【Agent-lightning】 - 1_环境搭建
人工智能·pytorch·深度学习·机器学习·chatgpt·transformer·vllm
dazzle3 小时前
计算机视觉处理(OpenCV基础教学(十三):图像水印添加技术详解)
人工智能·opencv·计算机视觉