K-Means 聚类的目标函数:簇内误差平方和

1. 什么是 K-Means?

K-Means 是一种无监督迭代式 的聚类算法:

给定数据集 {x₁, x₂, ..., xₙ} 与预设簇数 K,算法把样本划分为 K 个不相交的簇 C₁, C₂, ..., Cₖ,使得同一簇内样本尽可能相似,不同簇间样本尽可能远离

核心思想:

> "让簇内'抱团',让簇间'疏远'。"


2. 目标函数 J:簇内误差平方和(WCSS)

K-Means 用几何距离 衡量相似性,目标函数 J 定义为:
J=∑k=1K∑x∈Ck∥x−μk∥2 J = \sum_{k=1}^{K} \sum_{x \in C_k} \|x - \mu_k\|^2 J=k=1∑Kx∈Ck∑∥x−μk∥2

  • μₖ:第 k 个簇的质心(centroid)
  • ‖x − μₖ‖²:样本到所属质心的欧氏距离平方
  • J 的物理意义:Within-Cluster Sum of Squares (WCSS),即"簇内误差平方和"

> 算法目标 :找到使 J 最小的簇划分 {C₁,...,Cₖ} 与质心 {μ₁,...,μₖ}


3. 迭代两步:坐标下降求 J

K-Means 采用坐标下降策略,交替更新两个变量:

步骤 固定量 优化量 公式
E步 (Assignment) 质心 μₖ 样本归属 Cₖ Cₖ = {x : ‖x − μₖ‖² ≤ ‖x − μⱼ‖², ∀j}
M步 (Update) Cₖ 质心 μₖ μₖ = (1/Cₖ) ∑_{x∈Cₖ} x

示例

python 复制代码
def kmeans(X, K, max_iter=100):
    n, d = X.shape
    mu = X[torch.randperm(n)[:K]]          # 随机初始化 K 个质心
    for _ in range(max_iter):
        # E步:计算距离并分配样本
        dist = torch.cdist(X, mu)           # (n, K)
        labels = torch.argmin(dist, dim=1)  # (n,)
        # M步:重新计算质心
        for k in range(K):
            mask = labels == k
            if mask.sum() > 0:
                mu[k] = X[mask].mean(dim=0)
    return labels, mu
相关推荐
dazzle8 小时前
机器学习算法原理与实践-入门(三):使用数学方法实现KNN
人工智能·算法·机器学习
玄同7658 小时前
Python 后端三剑客:FastAPI/Flask/Django 对比与 LLM 开发选型指南
人工智能·python·机器学习·自然语言处理·django·flask·fastapi
B站_计算机毕业设计之家9 小时前
豆瓣电影推荐系统 | Python Django Echarts构建个性化影视推荐平台 大数据 毕业设计源码 (建议收藏)✅
大数据·python·机器学习·django·毕业设计·echarts·推荐算法
啊阿狸不会拉杆9 小时前
《机器学习导论》第 5 章-多元方法
人工智能·python·算法·机器学习·numpy·matplotlib·多元方法
铁蛋AI编程实战10 小时前
MemoryLake 实战:构建超长对话 AI 助手的完整代码教程
人工智能·python·microsoft·机器学习
张较瘦_10 小时前
[论文阅读] AI | 用机器学习给深度学习库“体检”:大幅提升测试效率的新思路
论文阅读·人工智能·机器学习
算法狗210 小时前
大模型面试题:大模型的训练和推理中显存和计算量的情况
人工智能·深度学习·机器学习·语言模型
我材不敲代码10 小时前
机器学习入门 04逻辑回归part2——提高逻辑回归模型的召回率
人工智能·机器学习·逻辑回归
渡我白衣11 小时前
信而有征——模型评估、验证与可信部署的完整体系
人工智能·深度学习·神经网络·目标检测·机器学习·计算机视觉·自然语言处理