00基于pytorch的深度学习遥感地物分类全流程实战教程(包含遥感深度学习数据集制作与大图预测)-前言

前言

本教程是我研究生期间工作的一个总结,适合地信遥感专业或者计算机专业同学想利用Python在本地利用深度学习进行遥感影像地物分类的同学,尤其是刚刚开始深度学习遥感地物分类的同学。因为本教程中既有遥感和深度学习的基础理论知识,也有编程实践,这样既能让计算机专业的同学了解到遥感的基本知识,也能让遥感地信专业的同学了解到深度学习的基础理论与编程实现。

当然本教程的理论知识都是一些浅显的介绍,让大家对遥感与深度学习的理论有一个大体的了解,如遥感数据的预处理流程,深度学习的基本流程等,了解传统计算机视觉与深度学习遥感地物分类的联系,并不能通过本教程对深度学习与遥感有较为深入的学习,如定量遥感、辐射校正、几何校正等不会进行深入的算法介绍。

本教程中的相关描述与表达方式,可能不是很学术、很官方,而是像教程、对话和总结,由于个人水平限制,既不想大家在理论上,被我对深度学习和遥感管中窥豹的认识带偏,也不想在技术上被我这一条技术路线所限制,仅供大家参考,希望可以对科研入门或者为了毕业论文抓耳挠腮的同学有所帮助。

主要内容

本教程分为理论篇和实践篇两章,主要内容如下:

理论篇

1.在遥感基础上,介绍什么是遥感,遥感数据的分类,遥感数据的数据结构,遥感数据预处理方法等

2.深度学习基础上,介绍什么是深度学习,深度学习应用的分类,几类常见的深度学习模型,深度学习的一般流程等

3.遥感与深度学习交叉上,深度学习与遥感的交叉融合创新分类,什么是深度学习遥感地物分类,深度学习遥感地物分类基本流程

实践篇

1.python基础与遥感深度学习境配置

2.使用公开数据集进行深度学习遥感地物分类

3.使用自己的数据进行深度学习遥感地物分类

亮点内容

1.既有深度学习基础知识,又有遥感基础知识,计算机或者遥感专业同学各取所需

2.制作自己的数据集,利用遥感数据在没有标签的情况下,构建自己专用任务的深度学习数据集(打标签,切片分块)-(实践篇3.使用自己的数据进行深度学习遥感地物分类中有该内容)

3.利用自己的数据训练模型,创建适用于遥感数据的dataloader,模型构建,标签没有完全标完,如何将其用于模型训练,模型效果验证 -(实践篇2.使用公开数据集进行深度学习遥感地物分类与实践篇3.使用自己的数据进行深度学习遥感地物分类中有该内容)

4.将模型应用于大图进行预测,此处有创新,把数据切片,通过在内存中操作,直接预测大图,较少繁琐裁剪拼接,提高预测效率 -(实践篇3.使用自己的数据进行深度学习遥感地物分类中有该内容)

相关推荐
kisshuan1239617 小时前
黄芪属植物物种识别与分类:基于 Faster R-CNN C4 模型的深度学习实现
深度学习·分类·r语言
拉姆哥的小屋17 小时前
从T5到Sentence-BERT:打造下一代个性化推荐系统 - EmbSum深度解析
人工智能·深度学习
耶夫斯计17 小时前
【SQL_agent】基于LLM实现sql助理
数据库·python·sql·语言模型
CoovallyAIHub17 小时前
YOLOv12之后,AI在火场如何进化?2025最后一篇YOLO论文揭示:要在浓烟中看见关键,仅靠注意力还不够
深度学习·算法·计算机视觉
vibag17 小时前
RAG向量数据库
python·语言模型·langchain·大模型
kisshuan1239617 小时前
基于YOLO11改进的C3k2-AdditiveBlock实现命中检测与双重命中事件识别_1
python
mg66817 小时前
0基础开发学习python工具_____用 Python + Pygame 打造绚丽烟花秀 轻松上手体验
开发语言·python·学习·pygame
nervermore99017 小时前
2.6 测试
python
LDG_AGI17 小时前
【推荐系统】深度学习训练框架(二十一):DistributedCheckPoint(DCP) — PyTorch分布式模型存储与加载
pytorch·分布式·深度学习