pytorch深度学习笔记12

目录

摘要

输出层的反向传播和实现


摘要

本篇文章继续学习尚硅谷深度学习教程,学习内容是输出层的反向传播和代码实现

输出层的反向传播和实现

在输出层,我们一般使用Softmax作为激活函数。

对于Softmax函数:

其偏导数为:

而对于输出层,一般会直接将结果代入损失函数的计算。对于我们之前介绍的分类问题,这里选择交叉熵误差(Cross Entropy Error)作为损失函数,就可以得到一个Softmax-with-Loss层,它包含了Softmax和Cross Entropy Loss两部分。

导数的计算会比较复杂,可以用计算图表示如下:

简化得:

在代码中可以实现为一个类 SoftmaxWithLoss:

复制代码
class SoftmaxWithLoss:
    def __init__(self):
        self.loss = None
        self.y = None # softmax的输出
        self.t = None # 监督数据

    def forward(self, x, t):
        self.t = t
        self.y = softmax(x)
        self.loss = cross_entropy_error(self.y, self.t)
        
        return self.loss

    def backward(self, dout=1):
        batch_size = self.t.shape[0]
        if self.t.size == self.y.size: # 监督数据是one-hot-vector的情况
            dx = (self.y - self.t) / batch_size
        else:
            dx = self.y.copy()
            dx[np.arange(batch_size), self.t] -= 1
            dx = dx / batch_size
        
        return dx
相关推荐
肖永威12 分钟前
macOS环境安装/卸载python实践笔记
笔记·python·macos
暗光之痕36 分钟前
Unreal5研究笔记 Actor的生命周期函数
笔记·unreal engine
Gain_chance1 小时前
35-学习笔记尚硅谷数仓搭建-DWS层最近n日汇总表及历史至今汇总表建表语句
数据库·数据仓库·hive·笔记·学习
宵时待雨1 小时前
STM32笔记归纳9:定时器
笔记·stm32·单片机·嵌入式硬件
pp起床2 小时前
Gen_AI 补充内容 Logit Lens 和 Patchscopes
人工智能·深度学习·机器学习
m0_719084112 小时前
React笔记张天禹
前端·笔记·react.js
阿杰学AI2 小时前
AI核心知识91——大语言模型之 Transformer 架构(简洁且通俗易懂版)
人工智能·深度学习·ai·语言模型·自然语言处理·aigc·transformer
芷栀夏3 小时前
CANN ops-math:筑牢 AI 神经网络底层的高性能数学运算算子库核心实现
人工智能·深度学习·神经网络
Rorsion3 小时前
PyTorch实现二分类(单特征输出+单层神经网络)
人工智能·pytorch·分类
r i c k4 小时前
数据库系统学习笔记
数据库·笔记·学习