198种组合算法+优化TCN-Transformer+SHAP分析+新数据预测+多输出!深度学习可解释分析,强烈安利,粉丝必备!









一、研究背景

  • 针对传统TCN和Transformer模型在超参数选择上依赖经验的问题,引入粒子群优化算法自动寻优。
  • 旨在提升模型在序列回归任务中的预测精度与泛化能力,适用于论文研究、竞赛建模和工程预测。

二、主要功能

  1. 数据预处理:归一化、划分训练/测试集。
  2. 超参数自动优化:使用PSO优化TCN和Transformer的关键参数。
  3. 构建TCN-Transformer混合网络:结合TCN的时序特征提取与Transformer的注意力机制。
  4. 模型训练与预测:支持多输出回归任务。
  5. 可视化分析:包括优化过程曲线、雷达图、拟合图、误差对比、特征重要性分析等。
  6. 新数据预测与结果保存:支持外部数据输入与预测结果导出。

三、算法步骤

  1. 读取数据并进行归一化。
  2. 划分训练集与测试集。
  3. 使用PSO优化以下超参数:
    • TCN卷积核数量
    • 卷积核大小
    • 丢弃率
    • TCN层数
    • Transformer注意力头数
  4. 使用优化后的参数构建TCN-Transformer网络。
  5. 训练模型并进行预测。
  6. 评估模型性能,对比优化前后结果。
  7. 可视化展示与结果保存。

四、技术路线

  • 数据流:输入 → 归一化 → TCN特征提取 → 位置编码 → Transformer自注意力 → 全连接输出。
  • 优化方法:PSO作为外层优化器,以验证集RMSE为适应度函数。
  • 模型融合:TCN提取局部时序特征,Transformer捕捉长距离依赖关系。

五、公式原理

  • TCN:使用因果卷积与膨胀卷积,数学形式为:

    yt=∑k=1Kwk⋅xt−d⋅k y_t = \sum_{k=1}^{K} w_k \cdot x_{t - d \cdot k} yt=k=1∑Kwk⋅xt−d⋅k

    其中 (d) 为膨胀因子。

  • Transformer自注意力

    Attention(Q,K,V)=softmax(QKTdk)V \text{Attention}(Q,K,V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V Attention(Q,K,V)=softmax(dk QKT)V

  • PSO更新公式

    vit+1=wvit+c1r1(pi−xit)+c2r2(g−xit) v_i^{t+1} = w v_i^t + c_1 r_1 (p_i - x_i^t) + c_2 r_2 (g - x_i^t) vit+1=wvit+c1r1(pi−xit)+c2r2(g−xit)
    xit+1=xit+vit+1 x_i^{t+1} = x_i^t + v_i^{t+1} xit+1=xit+vit+1


六、参数设定

  • PSO参数 :种群数 N=8,迭代次数 Max_iteration=5
  • TCN参数范围
    • 卷积核数量:232^323 ~ 272^727(即8~128)
    • 卷积核大小:3~9
    • 丢弃率:0.001~0.5
    • TCN层数:2~5
  • Transformer参数范围
    • 注意力头数:2~6
  • 训练参数:Adam优化器,初始学习率0.01,最大迭代500轮。

七、运行环境

  • 软件环境:MATLAB(建议R2024a及以上)
  • 依赖工具箱
    • Deep Learning Toolbox
    • Optimization Toolbox
    • 自定义函数包:OA_ToolBox\spider_plot\
  • 数据格式 :Excel文件(回归数据.xlsx新的多输入.xlsx

八、应用场景

  • 多输出回归预测:如气温与湿度预测、股票多指标预测、工程多目标优化等。
  • 研究对比实验:提供优化前后对比,适合学术论文中的算法比较。

完整代码私信回复198种组合算法+优化TCN-Transformer+SHAP分析+新数据预测+多输出!深度学习可解释分析,强烈安利,粉丝必备!

相关推荐
狐572 小时前
2026-01-12-LeetCode刷题笔记-1266-访问所有点的最小时间.md
笔记·算法·leetcode
Gorgous—l2 小时前
数据结构算法学习:LeetCode热题100-栈篇(有效的括号、最小栈、字符串解码、每日温度、柱状图中最大的矩形)
数据结构·学习·算法
小郭团队2 小时前
教育公平的探索
大数据·人工智能·嵌入式硬件·算法·硬件架构
瑞雨溪2 小时前
力扣题解:740.删除并获得点数
算法·leetcode·职场和发展
一瞬祈望2 小时前
⭐ 深度学习入门体系(第 15 篇): 从 RNN 到 LSTM:为什么深度网络需要“记忆能力”?
rnn·深度学习·lstm
LeeeX!2 小时前
基于YOLO11实现明厨亮灶系统实时检测【多场景数据+模型训练、推理、导出】
深度学习·算法·目标检测·数据集·明厨亮灶
红队it2 小时前
【Spark+Hadoop】基于spark+hadoop游戏评论数据分析可视化大屏(完整系统源码+数据库+开发笔记+详细部署教程+虚拟机分布式启动教程)✅
大数据·hadoop·分布式·算法·游戏·数据分析·spark
程序员-King.2 小时前
day125—二分查找—寻找峰值(LeetCode-162)
算法·leetcode·职场和发展
qianbo_insist2 小时前
基于APAP算法的图像和视频拼接
算法·数学建模·图像拼接