pytorch深度学习笔记15

目录

摘要

1.Momentum

2.学习率衰减

​​​​​​​等间隔衰减

​​​​​​​指定间隔衰减

​​​​​​​指数衰减


摘要

本篇文章继续学习尚硅谷深度学习教程,学习内容是动量法和学习率衰减

1.Momentum

原始的梯度下降法直接使用当前梯度来更新参数:

而Momentum(动量法)会保存历史梯度并给予一定的权重,使其也参与到参数更新中:

  • :历史(负)梯度的加权和
  • :历史梯度的权重
  • :当前梯度,即
  • :学习率

动量法有时能够减缓优化过程中的震荡,加快优化的速度。因为其会累计历史梯度,也可以有效避免鞍点问题。

Momentum的代码实现如下:

python 复制代码
class Momentum:

    def __init__(self, lr=0.01, momentum=0.9):
        self.lr = lr
        self.momentum = momentum
        self.v = None
        
    def update(self, params, grads):
        if self.v is None:
            self.v = {}
            for key, val in params.items():                                
                self.v[key] = np.zeros_like(val)
                
        for key in params.keys():
            self.v[key] = self.momentum*self.v[key] - self.lr*grads[key] 
            params[key] += self.v[key]

2.​​​​​​​学习率衰减

深度学习模型训练中调整最频繁的当属学习率,好的学习率可以使模型逐渐收敛并获得更好的精度。较大的学习率可以加快收敛速度,但可能在最优解附近震荡或不收敛;较小的学习率可以提高收敛的精度,但训练速度慢。学习率衰减是一种平衡策略,初期使用较大学习率快速接近最优解,后期逐渐减小学习率,使参数更稳定地收敛到最优解。

​​​​​​​等间隔衰减

每隔固定的训练周期(epoch),学习率按一定的比例下降,也称为"步长衰减"。例如,使学习率每隔20 epoch衰减为之前的0.7:

​​​​​​​指定间隔衰减

在指定的epoch,让学习率按照一定的系数衰减。例如,使学习率在epoch达到[10,50,200]时衰减为之前的0.7:

​​​​​​​指数衰减

学习率按照指数函数进行衰减。例如,使学习率以0.99为底数,epoch为指数衰减:

相关推荐
却道天凉_好个秋5 小时前
Tensorflow数据增强(三):高级裁剪
人工智能·深度学习·tensorflow
听麟5 小时前
HarmonyOS 6.0+ 跨端智慧政务服务平台开发实战:多端协同办理与电子证照管理落地
笔记·华为·wpf·音视频·harmonyos·政务
Lun3866buzha5 小时前
【深度学习应用】鸡蛋裂纹检测与分类:基于YOLOv3的智能识别系统,从图像采集到缺陷分类的完整实现
深度学习·yolo·分类
risc1234566 小时前
认识一个事物,需要哪些基本能力与要素?
笔记
大江东去浪淘尽千古风流人物6 小时前
【VLN】VLN仿真与训练三要素 Dataset,Simulators,Benchmarks(2)
深度学习·算法·机器人·概率论·slam
firewood20247 小时前
共射三极管放大电路相关情况分析
笔记·学习
cyyt7 小时前
深度学习周报(2.2~2.8)
人工智能·深度学习
Hello_Embed7 小时前
libmodbus STM32 主机实验(USB 串口版)
笔记·stm32·学习·嵌入式·freertos·modbus
2401_836235867 小时前
财务报表识别产品:从“数据搬运”到“智能决策”的技术革命
人工智能·科技·深度学习·ocr·生活
risc1234567 小时前
思维脚手架
笔记