霍夫变换vs LS vs RANSAC 拟合直线 MATLAB实现

一、实验数据

真实直线+噪声+离群点

真实模型(Ground Truth)

cpp 复制代码
clc; clear; close all;
rng(2);

% ===== Ground Truth =====
theta_gt = pi/6;   % 30°
rho_gt   = 40;

x = linspace(0,100,50);
y = (rho_gt - x*cos(theta_gt))/sin(theta_gt);

% 亚像素高斯噪声
y = y + 0.1*randn(size(y));

% 离群点
x_out = rand(1,15)*100;
y_out = rand(1,15)*100;

X = [x x_out];
Y = [y y_out];
pts = [X(:), Y(:)];

% 画出原始数据
scatter(X, Y, 25, 'k', 'filled')

二、方法一:最小二乘(LS / 正交最小二乘)

cpp 复制代码
% 计算均值
mu = mean(pts);
% 计算当前点 -均值
Xc = pts - mu;

[~,~,V] = svd(Xc,0);
n_ls = V(:,2);                 % 法向
theta_ls = atan2(n_ls(2), n_ls(1));
rho_ls   = mu * n_ls;

三、方法二:RANSAC 拟合直线

cpp 复制代码
eps = 1.0;
best_inliers = [];
theta_r = 0; rho_r = 0;

for k = 1:1000
    id = randperm(size(pts,1),2);
    p1 = pts(id(1),:);
    p2 = pts(id(2),:);

    v = p2 - p1;
    n = [v(2), -v(1)];
    n = n / norm(n);
    rho = p1*n';

    d = abs(pts*n' - rho);
    inliers = find(d < eps);

    if numel(inliers) > numel(best_inliers)
        best_inliers = inliers;
        theta_r = atan2(n(2), n(1));
        rho_r   = rho;
    end
end

四、方法三:霍夫变换

cpp 复制代码
img = zeros(120,120);
ix = round(X); iy = round(Y);
valid = ix>0 & ix<=120 & iy>0 & iy<=120;
img(sub2ind(size(img), iy(valid), ix(valid))) = 1;

[H,theta,rho] = hough(img);
P = houghpeaks(H,1);

theta_h = deg2rad(theta(P(2)));
rho_h   = rho(P(1));

五、画图对比(重点)

cpp 复制代码
xx = linspace(0,100,200);

% 真实线
yy_gt = (rho_gt - xx*cos(theta_gt))/sin(theta_gt);
yy_ls = (rho_ls - xx*cos(theta_ls))/sin(theta_ls);
yy_r  = (rho_r  - xx*cos(theta_r ))/sin(theta_r );
yy_h  = (rho_h  - xx*cos(theta_h ))/sin(theta_h );

figure; hold on; grid on; axis equal;
scatter(X, Y, 25, 'k', 'filled');
plot(xx, yy_gt, 'g-', 'LineWidth',2);
plot(xx, yy_ls, 'b--', 'LineWidth',2);
plot(xx, yy_r,  'r-.', 'LineWidth',2);
plot(xx, yy_h,  'm:', 'LineWidth',2);

legend('Data','GT','LS','RANSAC','Hough');
xlabel('x'); ylabel('y');
title('Line Fitting: Hough vs LS vs RANSAC');
  • LS:被离群点明显拉歪

  • RANSAC:方向对,但不够精

  • 霍夫:结构对,但位置"卡 bin"

  • GT:作为参考

六、统一误差计算(定量)

平均正交几何误差

参数误差

bash 复制代码
%平均正交几何误差
err = @(th,rh) mean(abs(pts*[cos(th); sin(th)] - rh));

E_ls = err(theta_ls, rho_ls);
E_r  = err(theta_r,  rho_r );
E_h  = err(theta_h,  rho_h );


% 参数误差
dtheta_ls = abs(theta_ls - theta_gt);
drho_ls   = abs(rho_ls   - rho_gt);

dtheta_r  = abs(theta_r  - theta_gt);
drho_r    = abs(rho_r    - rho_gt);

dtheta_h  = abs(theta_h  - theta_gt);
drho_h    = abs(rho_h    - rho_gt);

稳定结论顺序:

几何误差:RANSAC < Hough < LS (有离群点时)
参数精度:LS > RANSAC > Hough

相关推荐
爱打代码的小林7 分钟前
基于 MediaPipe 实现实时面部关键点检测
python·opencv·计算机视觉
zheyutao42 分钟前
字符串哈希
算法
A尘埃1 小时前
保险公司车险理赔欺诈检测(随机森林)
算法·随机森林·机器学习
深蓝电商API1 小时前
图片验证码识别:pytesseract+opencv入门
人工智能·opencv·计算机视觉·pytesseract
大江东去浪淘尽千古风流人物2 小时前
【VLN】VLN(Vision-and-Language Navigation视觉语言导航)算法本质,范式难点及解决方向(1)
人工智能·python·算法
努力学算法的蒟蒻2 小时前
day79(2.7)——leetcode面试经典150
算法·leetcode·职场和发展
2401_841495642 小时前
【LeetCode刷题】二叉树的层序遍历
数据结构·python·算法·leetcode·二叉树··队列
AC赳赳老秦2 小时前
2026国产算力新周期:DeepSeek实战适配英伟达H200,引领大模型训练效率跃升
大数据·前端·人工智能·算法·tidb·memcache·deepseek
2401_841495643 小时前
【LeetCode刷题】二叉树的直径
数据结构·python·算法·leetcode·二叉树··递归
budingxiaomoli3 小时前
优选算法-字符串
算法