《认知几何学:思维如何弯曲意义空间》补充材料
附录A:概念流形度规学习的算法细节
A.1 概念嵌入空间的几何结构学习
数据预处理:
-
语料来源:世毫九对话实验全文本 + Wikipedia摘要 + 学术论文摘要
-
概念提取:使用BERT-base模型提取名词短语,筛选出现频率>100次的概念
-
嵌入生成:使用GloVe+Word2Vec+FastText的加权融合嵌入
度规张量学习算法:
```python
import numpy as np
from scipy.optimize import minimize
from sklearn.manifold import TSNE
class ConceptMetricLearner:
def init(self, concepts, embeddings, alpha=0.1, beta=0.05):
"""
概念流形度规学习器
参数:
concepts: 概念列表 [n_concepts]
embeddings: 概念嵌入 [n_concepts, n_dim]
alpha: 局部平滑正则化系数
beta: 全局曲率约束系数
"""
self.concepts = concepts
self.embeddings = embeddings
self.n = len(concepts)
self.d = embeddings.shape[1]
self.alpha = alpha
self.beta = beta
def _compute_affinity(self):
"""计算概念间亲和度矩阵"""
from scipy.spatial.distance import pdist, squareform
语义相似性
cos_sim = np.dot(self.embeddings, self.embeddings.T)
共现频率(从语料统计)
cooccur = self._compute_cooccurrence()
综合亲和度
A = 0.7 * cos_sim + 0.3 * cooccur
return A
def metric_tensor_at_point(self, point_idx, G_params):
"""
计算点i处的度规张量
G_params: 度规参数 [n, d, d]
"""
G_i = G_params[point_idx]
确保对称正定
G_i = (G_i + G_i.T) / 2
添加小扰动确保正定
G_i += np.eye(self.d) * 1e-6
return G_i
def geodesic_distance(self, i, j, G_params):
"""计算概念i到j的测地线距离"""
from scipy.integrate import solve_ivp
def geodesic_eq(t, y, G):
"""测地线方程 dy/dt = f(t, y)"""
x = y[:self.d] # 位置
v = y[self.d:] # 速度
计算克里斯托费尔符号
Gamma = self._christoffel_symbols(x, G)
加速度方程 d²x/dt² = -Γ dx/dt dx/dt
dvdt = np.zeros(self.d)
for k in range(self.d):
for a in range(self.d):
for b in range(self.d):
dvdt[k] -= Gamma[k, a, b] * v[a] * v[b]
return np.concatenate([v, dvdt])
初始条件:从i到j的直线路径
x0 = self.embeddings[i]
x1 = self.embeddings[j]
v0 = (x1 - x0) / np.linalg.norm(x1 - x0)
沿路径积分测地线方程
y0 = np.concatenate([x0, v0])
sol = solve_ivp(lambda t, y: geodesic_eq(t, y, G_params),
0, 1\], y0, method='RK45', dense_output=True) # 计算路径长度 t_eval = np.linspace(0, 1, 100) y = sol.sol(t_eval) positions = y\[:self.d, :
黎曼长度积分
length = 0
for k in range(99):
dx = positions[:, k+1] - positions[:, k]
dt = t_eval[k+1] - t_eval[k]
x_mid = (positions[:, k+1] + positions[:, k]) / 2
G_mid = self._interpolate_metric(x_mid, G_params)
length += np.sqrt(np.dot(dx, G_mid @ dx)) / dt
return length
def loss_function(self, G_params_flat):
"""度规学习损失函数"""
重塑参数
G_params = G_params_flat.reshape((self.n, self.d, self.d))
loss = 0
1. 局部相似性约束
A = self._compute_affinity()
for i in range(self.n):
for j in range(self.n):
if A[i, j] > 0.5: # 高亲和概念应靠近
d_ij = self.geodesic_distance(i, j, G_params)
loss += A[i, j] * d_ij ** 2
2. 局部平滑正则化
for i in range(self.n):
G_i = self.metric_tensor_at_point(i, G_params)
for j in self._get_neighbors(i):
G_j = self.metric_tensor_at_point(j, G_params)
loss += self.alpha * np.linalg.norm(G_i - G_j, 'fro') ** 2
3. 曲率正则化(防止过度弯曲)
for i in range(self.n):
R = self._compute_curvature(i, G_params)
loss += self.beta * np.linalg.norm(R, 'fro') ** 2
return loss
def learn_metric(self, max_iter=1000):
"""学习最优度规"""
初始化度规为单位矩阵
G_init = np.zeros((self.n, self.d, self.d))
for i in range(self.n):
G_init[i] = np.eye(self.d)
优化
result = minimize(self.loss_function, G_init.flatten(),
method='L-BFGS-B', options={'maxiter': max_iter})
G_optimal = result.x.reshape((self.n, self.d, self.d))
return G_optimal
```
A.2 度规可视化与验证
```python
def visualize_concept_manifold(embeddings, metric_tensors, concepts, highlight_concepts=None):
"""
可视化概念流形的几何结构
参数:
embeddings: 概念嵌入 [n, d]
metric_tensors: 度规张量 [n, d, d]
concepts: 概念名称列表
highlight_concepts: 高亮显示的概念索引列表
"""
import matplotlib.pyplot as plt
from matplotlib.patches import Ellipse
降维到2D用于可视化
tsne = TSNE(n_components=2, perplexity=30, random_state=42)
embeddings_2d = tsne.fit_transform(embeddings)
计算每个点的局部度规在2D投影
注意:这是近似,完整度规在降维中会损失信息
metric_2d = np.zeros((len(concepts), 2, 2))
for i in range(len(concepts)):
使用PCA找到2D投影平面
from sklearn.decomposition import PCA
pca = PCA(n_components=2)
在嵌入空间采样局部点
neighbors = np.argsort(np.linalg.norm(
embeddings - embeddings[i], axis=1))[:20]
local_emb = embeddings[neighbors]
pca.fit(local_emb)
投影度规到2D平面
proj_matrix = pca.components_ # [2, d]
metric_2d[i] = proj_matrix @ metric_tensors[i] @ proj_matrix.T
绘制
fig, ax = plt.subplots(figsize=(12, 10))
绘制概念点
scatter = ax.scatter(embeddings_2d[:, 0], embeddings_2d[:, 1],
alpha=0.6, s=50, c='lightblue', edgecolors='gray')
绘制局部度规椭圆
for i in range(len(concepts)):
if highlight_concepts and i in highlight_concepts:
color = 'red'
alpha = 0.8
linewidth = 2
else:
color = 'blue'
alpha = 0.3
linewidth = 1
计算椭圆参数(度规的特征值/特征向量)
G = metric_2d[i]
eigvals, eigvecs = np.linalg.eigh(G)
椭圆角度(主方向)
angle = np.degrees(np.arctan2(eigvecs[1, 0], eigvecs[0, 0]))
椭圆大小(与特征值平方根成反比,因为度规测量的是距离的平方)
width = 0.3 / np.sqrt(eigvals[0] + 1e-6)
height = 0.3 / np.sqrt(eigvals[1] + 1e-6)
ellipse = Ellipse(xy=embeddings_2d[i], width=width, height=height,
angle=angle, alpha=alpha, color=color, linewidth=linewidth)
ax.add_patch(ellipse)
标注概念
for i, concept in enumerate(concepts[:50]): # 只标注前50个
ax.annotate(concept, embeddings_2d[i], fontsize=8, alpha=0.7)
ax.set_xlabel('Dimension 1', fontsize=12)
ax.set_ylabel('Dimension 2', fontsize=12)
ax.set_title('概念流形几何结构可视化\n椭圆表示局部度规', fontsize=14)
ax.grid(True, alpha=0.3)
plt.tight_layout()
return fig
```
附录B:对话分形维数计算的完整步骤
B.1 时间序列分形分析算法
```python
import numpy as np
from scipy import stats, optimize
import matplotlib.pyplot as plt
class DialogueFractalAnalyzer:
"""对话分形维数分析器"""
def init(self, dialogue_timestamps, cognitive_measures):
"""
初始化分析器
参数:
dialogue_timestamps: 对话事件时间戳序列 [n_events]
cognitive_measures: 认知测量值序列 [n_events],如:
-
观点变化幅度
-
概念新颖性
-
情感强度
"""
self.timestamps = np.array(dialogue_timestamps)
self.measures = np.array(cognitive_measures)
计算间隔序列
self.intervals = np.diff(self.timestamps)
def hurst_exponent(self, method='RS'):
"""
计算Hurst指数(H)
method: 'RS' (重标极差法), 'DFA' (去趋势波动分析), 'PSD' (功率谱密度)
"""
if method == 'RS':
return self._hurst_rs()
elif method == 'DFA':
return self._hurst_dfa()
elif method == 'PSD':
return self._hurst_psd()
else:
raise ValueError(f"未知方法: {method}")
def _hurst_rs(self):
"""重标极差法计算Hurst指数"""
n = len(self.measures)
R_S = []
window_sizes = []
使用对数间隔的窗口大小
min_window = 10
for k in range(1, int(np.log2(n/4))):
window = 2**k
if window < min_window:
continue
num_windows = n // window
if num_windows < 4:
continue
window_R_S = []
for i in range(num_windows):
segment = self.measures[i*window:(i+1)*window]
if len(segment) < 2:
continue
累计偏差
mean_seg = np.mean(segment)
deviations = segment - mean_seg
Z = np.cumsum(deviations)
范围 R
R = np.max(Z) - np.min(Z)
标准差 S
S = np.std(segment, ddof=1)
if S > 0:
window_R_S.append(R / S)
if len(window_R_S) > 0:
R_S.append(np.mean(window_R_S))
window_sizes.append(window)
线性拟合 log(R/S) ~ H * log(window)
log_window = np.log(window_sizes)
log_RS = np.log(R_S)
slope, intercept, r_value, p_value, std_err = stats.linregress(log_window, log_RS)
return {
'H': slope,
'intercept': intercept,
'r_squared': r_value**2,
'p_value': p_value,
'std_err': std_err,
'window_sizes': window_sizes,
'R_S_values': R_S
}
def _hurst_dfa(self, order=1):
"""
去趋势波动分析 (DFA)
order: 去趋势多项式的阶数
"""
n = len(self.measures)
1. 积分序列
y = np.cumsum(self.measures - np.mean(self.measures))
2. 不同窗口大小的波动函数
window_sizes = []
fluctuations = []
min_window = 10
for k in range(1, int(np.log2(n/4))):
window = 2**k
if window < min_window or window > n/4:
continue
num_windows = n // window
if num_windows < 4:
continue
F_window = []
for i in range(num_windows):
segment = y[i*window:(i+1)*window]
t = np.arange(len(segment))
多项式拟合去趋势
if order == 1:
coeffs = np.polyfit(t, segment, 1)
trend = np.polyval(coeffs, t)
elif order == 2:
coeffs = np.polyfit(t, segment, 2)
trend = np.polyval(coeffs, t)
else:
raise ValueError("仅支持1阶或2阶DFA")
去趋势后的波动
detrended = segment - trend
F_window.append(np.sqrt(np.mean(detrended**2)))
if len(F_window) > 0:
fluctuations.append(np.mean(F_window))
window_sizes.append(window)
3. 线性拟合 log(F) ~ alpha * log(window)
log_window = np.log(window_sizes)
log_F = np.log(fluctuations)
slope, intercept, r_value, p_value, std_err = stats.linregress(log_window, log_F)
return {
'alpha': slope, # DFA指数
'intercept': intercept,
'r_squared': r_value**2,
'p_value': p_value,
'std_err': std_err,
'window_sizes': window_sizes,
'fluctuations': fluctuations,
'hurst': slope # 对于fGn,H = alpha
}
def multifractal_spectrum(self, q_values=np.arange(-5, 6, 0.5)):
"""
计算多重分形谱
参数:
q_values: 矩阶数范围
"""
n = len(self.measures)
使用小波变换模极大方法
import pywt
小波变换
coeffs = pywt.wavedec(self.measures, 'db4', level=6)
计算每个尺度的分区函数
scales = [2**j for j in range(1, 7)]
Z_q = {q: [] for q in q_values}
for j, scale in enumerate(scales):
detail_coeffs = np.abs(coeffs[-(j+1)])
if len(detail_coeffs) < 10:
continue
for q in q_values:
if q == 0:
Z = np.mean(np.log(detail_coeffs**2))
else:
Z = np.log(np.mean(detail_coeffs**q))
Z_q[q].append(Z)
计算质量指数 τ(q)
tau_q = []
valid_q = []
for q in q_values:
if len(Z_q[q]) < 3:
continue
τ(q) ~ slope * log(scale)
scales_log = np.log(scales[:len(Z_q[q])])
Z_log = np.array(Z_q[q])
slope, _, r_value, _, _ = stats.linregress(scales_log, Z_log)
if r_value**2 > 0.8: # 仅保留好的拟合
tau_q.append(slope)
valid_q.append(q)
勒让德变换得到多重分形谱 f(α)
tau_q = np.array(tau_q)
valid_q = np.array(valid_q)
计算奇异性强度 α = dτ/dq
alpha_q = np.gradient(tau_q, valid_q)
计算谱维数 f(α) = qα - τ(q)
f_alpha = valid_q * alpha_q - tau_q
return {
'q_values': valid_q,
'tau_q': tau_q,
'alpha_spectrum': alpha_q,
'f_spectrum': f_alpha,
'multifractal_width': np.max(alpha_q) - np.min(alpha_q),
'asymmetry': (np.max(alpha_q) - np.mean(alpha_q)) /
(np.mean(alpha_q) - np.min(alpha_q))
}
def plot_fractal_analysis(self):
"""绘制分形分析结果"""
fig, axes = plt.subplots(2, 3, figsize=(15, 10))
1. 原始时间序列
axes[0, 0].plot(self.timestamps, self.measures, 'b-', alpha=0.7, linewidth=1)
axes[0, 0].set_xlabel('对话时间', fontsize=12)
axes[0, 0].set_ylabel('认知测量值', fontsize=12)
axes[0, 0].set_title('对话认知时间序列', fontsize=14)
axes[0, 0].grid(True, alpha=0.3)
2. 间隔分布(对数坐标)
axes[0, 1].hist(self.intervals, bins=50, alpha=0.7, density=True)
axes[0, 1].set_xlabel('时间间隔', fontsize=12)
axes[0, 1].set_ylabel('概率密度', fontsize=12)
axes[0, 1].set_title('对话间隔分布', fontsize=14)
axes[0, 1].set_xscale('log')
axes[0, 1].set_yscale('log')
axes[0, 1].grid(True, alpha=0.3)
3. Hurst指数分析 (RS法)
rs_result = self.hurst_exponent(method='RS')
axes[0, 2].loglog(rs_result['window_sizes'], rs_result['R_S_values'],
'o-', linewidth=2)
axes[0, 2].set_xlabel('窗口大小', fontsize=12)
axes[0, 2].set_ylabel('R/S', fontsize=12)
axes[0, 2].set_title(f'Hurst指数 H = {rs_result["H"]:.3f}', fontsize=14)
axes[0, 2].grid(True, alpha=0.3)
4. DFA分析
dfa_result = self._hurst_dfa()
axes[1, 0].loglog(dfa_result['window_sizes'], dfa_result['fluctuations'],
's-', color='red', linewidth=2)
axes[1, 0].set_xlabel('窗口大小', fontsize=12)
axes[1, 0].set_ylabel('波动函数 F(n)', fontsize=12)
axes[1, 0].set_title(f'DFA指数 α = {dfa_result["alpha"]:.3f}', fontsize=14)
axes[1, 0].grid(True, alpha=0.3)
5. 多重分形谱
mf_result = self.multifractal_spectrum()
axes[1, 1].plot(mf_result['alpha_spectrum'], mf_result['f_spectrum'],
'o-', color='green', linewidth=2)
axes[1, 1].set_xlabel('奇异性强度 α', fontsize=12)
axes[1, 1].set_ylabel('谱维数 f(α)', fontsize=12)
axes[1, 1].set_title(f'多重分形谱 (宽度={mf_result["multifractal_width"]:.3f})',
fontsize=14)
axes[1, 1].grid(True, alpha=0.3)
6. 分形维数估计汇总
H_rs = rs_result['H']
alpha_dfa = dfa_result['alpha']
计算分形维数 D = 2 - H (对于时间序列)
D_rs = 2 - H_rs
D_dfa = 2 - alpha_dfa if alpha_dfa <= 1 else 1 / alpha_dfa
axes[1, 2].bar(['RS方法', 'DFA方法'], [D_rs, D_dfa], alpha=0.7)
axes[1, 2].set_ylabel('分形维数估计', fontsize=12)
axes[1, 2].set_title(f'平均分形维数 D ≈ {(D_rs+D_dfa)/2:.3f}', fontsize=14)
axes[1, 2].grid(True, alpha=0.3, axis='y')
plt.tight_layout()
return fig, {
'hurst_rs': H_rs,
'hurst_dfa': alpha_dfa,
'fractal_dimension_rs': D_rs,
'fractal_dimension_dfa': D_dfa,
'multifractal_width': mf_result['multifractal_width']
}
```
B.2 分形维数计算的实验验证
```python
def validate_fractal_hypothesis():
"""验证对话分形假设"""
模拟数据:已知分形维数的合成时间序列
np.random.seed(42)
1. 布朗运动 (H=0.5, D=1.5)
n_points = 10000
brownian = np.cumsum(np.random.randn(n_points))
brownian_times = np.linspace(0, 100, n_points)
2. 分形布朗运动 (H=0.8, D=1.2)
from fbm import FBM
fbm_process = FBM(n=n_points, hurst=0.8, length=100)
fbm_series = fbm_process.fbm()
fbm_times = np.linspace(0, 100, n_points)
3. 实际对话数据
dialogue_analyzer = DialogueFractalAnalyzer(
dialogue_timestamps=dialogue_data['timestamps'],
cognitive_measures=dialogue_data['complexity_scores']
)
分析比较
results = {}
for name, (times, series) in [('布朗运动', (brownian_times, brownian)),
('分形布朗运动', (frownian_times, fbm_series)),
('对话数据', (dialogue_data['timestamps'],
dialogue_data['complexity_scores']))]:
analyzer = DialogueFractalAnalyzer(times, series)
rs_result = analyzer.hurst_exponent('RS')
dfa_result = analyzer._hurst_dfa()
results[name] = {
'H_RS': rs_result['H'],
'H_DFA': dfa_result['alpha'],
'D_RS': 2 - rs_result['H'],
'D_DFA': 2 - dfa_result['alpha'] if dfa_result['alpha'] <= 1 else 1/dfa_result['alpha']
}
绘制比较图
fig, axes = plt.subplots(1, 3, figsize=(15, 4))
for idx, (name, data) in enumerate(results.items()):
x = ['H_RS', 'H_DFA', 'D_RS', 'D_DFA']
y = [data['H_RS'], data['H_DFA'], data['D_RS'], data['D_DFA']]
bars = axes[idx].bar(x, y, alpha=0.7)
axes[idx].set_title(name, fontsize=12)
axes[idx].set_ylabel('值', fontsize=10)
axes[idx].grid(True, alpha=0.3, axis='y')
理论值标注
if name == '布朗运动':
axes[idx].axhline(y=0.5, color='red', linestyle='--', alpha=0.5, label='理论H=0.5')
axes[idx].axhline(y=1.5, color='green', linestyle='--', alpha=0.5, label='理论D=1.5')
elif name == '分形布朗运动':
axes[idx].axhline(y=0.8, color='red', linestyle='--', alpha=0.5, label='理论H=0.8')
axes[idx].axhline(y=1.2, color='green', linestyle='--', alpha=0.5, label='理论D=1.2')
axes[idx].legend(fontsize=8)
plt.tight_layout()
return fig, results
```
附录C:认知场方程的变分推导
C.1 认知作用量原理
认知几何学的基本假设:思维演化遵循最小认知作用量原理。定义认知作用量𝒮为:
```
𝒮[g_μν, ψ] = ∫_ℳ d⁴x √|g| ℒ(g_μν, ∂_αg_μν, ψ, ∂_μψ)
```
其中:
· g_μν(x):概念流形度规张量
· ψ(x):认知场,表示意义密度
· ℒ:认知拉格朗日密度
· ℳ:认知时空流形
C.2 拉格朗日密度构造
最一般的认知拉格朗日密度包含以下项:
```
ℒ = ℒ_EH + ℒ_matter + ℒ_interaction + ℒ_boundary
```
- 爱因斯坦-希尔伯特项(曲率项):
```
ℒ_EH = (1/(16πG_c)) R
```
其中R是标量曲率,G_c是认知引力常数。
- 物质项(意义场):
```
ℒ_matter = -½ g^μν ∂_μψ ∂_νψ - V(ψ)
```
其中V(ψ)是意义势能,例如:
```
V(ψ) = ½ m² ψ² + λ/4! ψ⁴
```
- 相互作用项:
```
ℒ_interaction = -α R ψ² - β G^μν ∂_μψ ∂_νψ
```
其中α, β是耦合常数。
- 边界项:
```
ℒ_boundary = ∂_μ(√|g| K^μ)
```
其中K^μ是边界曲率相关项,确保作用量变分良好定义。
C.3 变分推导步骤
步骤1:度规变分
对作用量𝒮关于度规g_μν变分:
```
δ𝒮/δg_μν = 0
```
计算各项贡献:
- 爱因斯坦-希尔伯特项变分:
```
δ(∫ d⁴x √|g| R) = ∫ d⁴x √|g| (R_μν - ½ R g_μν) δg^μν + 边界项
```
- 物质项变分:
```
δ(∫ d⁴x √|g| ℒ_matter) = ∫ d⁴x √|g| T_μν δg^μν
```
其中T_μν是认知能动张量:
```
T_μν = ∂_μψ ∂_νψ - g_μν[½ g^{αβ} ∂_αψ ∂_βψ + V(ψ)]
```
步骤2:场方程推导
综合所有项,得到认知爱因斯坦方程:
```
R_μν - ½ R g_μν = 8πG_c T_μν + 8πG_c T_μν^(int)
```
其中T_μν^(int)来自相互作用项。
步骤3:意义场方程
对作用量关于ψ变分:
```
δ𝒮/δψ = 0
```
得到认知克莱因-戈登方程:
```
(□ - m²)ψ - λ/6 ψ³ - 2α R ψ - β G^μν ∇_μ∇_νψ = 0
```
其中□ = g^μν∇_μ∇_ν是协变达朗贝尔算符。
C.4 线性化近似与引力波类比
在小扰动近似下,设:
```
g_μν = η_μν + h_μν, |h_μν| ≪ 1
ψ = ψ_0 + δψ
```
在闵可夫斯基背景η_μν下,线性化场方程为:
度规扰动方程:
```
□̄ h_μν = -16πG_c (T_μν - ½ η_μν T)
```
其中□̄ = η^αβ∂_α∂_β是平直时空达朗贝尔算符。
意义场扰动方程:
```
(□̄ - m_eff²)δψ = 0
```
其中有效质量m_eff² = m² + 2α R_0 + λψ_0²/2。
C.5 数值求解算法
```python
import numpy as np
from scipy.integrate import solve_ivp
import torch
import torch.nn as nn
class CognitiveFieldSolver:
"""认知场方程数值求解器"""
def init(self, grid_size=64, dim=2, G_c=1.0, m=1.0, lambda_=0.1):
self.grid_size = grid_size
self.dim = dim
self.G_c = G_c
self.m = m
self.lambda_ = lambda_
创建计算网格
x = np.linspace(-5, 5, grid_size)
if dim == 2:
X, Y = np.meshgrid(x, x)
self.grid = np.stack([X, Y], axis=-1)
elif dim == 3:
X, Y, Z = np.meshgrid(x, x, x)
self.grid = np.stack([X, Y, Z], axis=-1)
初始化场
self.initialize_fields()
def initialize_fields(self):
"""初始化度规场和意义场"""
初始度规:平坦空间+随机扰动
self.g_mu_nu = np.zeros((self.grid_size,) * self.dim + (self.dim, self.dim))
for i in range(self.dim):
self.g_mu_nu[..., i, i] = 1.0
小随机扰动
noise = 0.01 * np.random.randn(*self.g_mu_nu.shape)
self.g_mu_nu += noise
初始意义场:高斯分布
r_squared = np.sum(self.grid**2, axis=-1)
self.psi = np.exp(-r_squared / 4.0)
def compute_christoffel(self, g_mu_nu):
"""计算克里斯托费尔符号"""
dim = g_mu_nu.shape[-1]
g_inv = np.linalg.inv(g_mu_nu)
计算度规导数
grad_g = np.gradient(g_mu_nu, axis=range(self.dim))
克里斯托费尔符号 Γ^λ_μν = ½ g^λρ (∂_μ g_νρ + ∂_ν g_ρμ - ∂_ρ g_μν)
Gamma = np.zeros(g_mu_nu.shape + (dim,))
for lam in range(dim):
for mu in range(dim):
for nu in range(dim):
term = 0
for rho in range(dim):
d_mu_g_nu_rho = grad_g[mu][..., nu, rho] if self.dim > 1 else grad_g[mu][nu, rho]
d_nu_g_rho_mu = grad_g[nu][..., rho, mu] if self.dim > 1 else grad_g[nu][rho, mu]
d_rho_g_mu_nu = grad_g[rho][..., mu, nu] if self.dim > 1 else grad_g[rho][mu, nu]
term += g_inv[..., lam, rho] * (
d_mu_g_nu_rho + d_nu_g_rho_mu - d_rho_g_mu_nu
)
Gamma[..., lam, mu, nu] = 0.5 * term
return Gamma
def compute_curvature(self, g_mu_nu, Gamma):
"""计算黎曼曲率张量"""
dim = g_mu_nu.shape[-1]
计算克里斯托费尔符号的导数
grad_Gamma = np.gradient(Gamma, axis=range(self.dim))
黎曼曲率 R^ρ_σμν = ∂_μΓ^ρ_νσ - ∂_νΓ^ρ_μσ + Γ^ρ_μλΓ^λ_νσ - Γ^ρ_νλΓ^λ_μσ
R = np.zeros(g_mu_nu.shape + (dim, dim))
for rho in range(dim):
for sigma in range(dim):
for mu in range(dim):
for nu in range(dim):
term1 = grad_Gamma[mu][..., rho, nu, sigma] if self.dim > 1 else grad_Gamma[mu][rho, nu, sigma]
term2 = grad_Gamma[nu][..., rho, mu, sigma] if self.dim > 1 else grad_Gamma[nu][rho, mu, sigma]
term3 = 0
term4 = 0
for lam in range(dim):
term3 += Gamma[..., rho, mu, lam] * Gamma[..., lam, nu, sigma]
term4 += Gamma[..., rho, nu, lam] * Gamma[..., lam, mu, sigma]
R[..., rho, sigma, mu, nu] = term1 - term2 + term3 - term4
里奇曲率 R_μν = R^ρ_μρν
Ricci = np.zeros_like(g_mu_nu)
for mu in range(dim):
for nu in range(dim):
for rho in range(dim):
Ricci[..., mu, nu] += R[..., rho, mu, rho, nu]
标量曲率 R = g^μν R_μν
g_inv = np.linalg.inv(g_mu_nu)
R_scalar = np.einsum('...ij,...ij', g_inv, Ricci)
return R, Ricci, R_scalar
def cognitive_field_equations(self, t, y):
"""认知场方程的右端函数(用于ODE积分)"""
重塑状态向量
n_total = self.grid_size ** self.dim
g_mu_nu_flat = y[:n_total * self.dim * self.dim]
psi_flat = y[n_total * self.dim * self.dim:]
g_mu_nu = g_mu_nu_flat.reshape((self.grid_size,) * self.dim + (self.dim, self.dim))
psi = psi_flat.reshape((self.grid_size,) * self.dim)
计算几何量
Gamma = self.compute_christoffel(g_mu_nu)
R, Ricci, R_scalar = self.compute_curvature(g_mu_nu, Gamma)
计算协变导数
grad_psi = np.gradient(psi, axis=range(self.dim))
爱因斯坦方程:R_μν - ½ R g_μν = 8πG_c T_μν
计算能动张量 T_μν
g_inv = np.linalg.inv(g_mu_nu)
T_mu_nu = np.zeros_like(g_mu_nu)
for mu in range(self.dim):
for nu in range(self.dim):
动能项
kinetic = 0
for alpha in range(self.dim):
for beta in range(self.dim):
kinetic += g_inv[..., alpha, beta] * grad_psi[alpha] * grad_psi[beta]
T_mu_nu[..., mu, nu] = grad_psi[mu] * grad_psi[nu]
T_mu_nu[..., mu, nu] -= 0.5 * g_mu_nu[..., mu, nu] * (0.5 * kinetic + self.V(psi))
爱因斯坦张量
Einstein = Ricci - 0.5 * R_scalar[..., np.newaxis, np.newaxis] * g_mu_nu
度规演化方程(简化版本)
dg_dt = -Einstein + 8 * np.pi * self.G_c * T_mu_nu
意义场演化方程:□ψ - m²ψ - λψ³/6 = 0
计算协变达朗贝尔算符 □ψ = g^μν ∇_μ∇_νψ
首先计算二阶协变导数
cov_grad2_psi = np.zeros((self.grid_size,) * self.dim + (self.dim, self.dim))
for mu in range(self.dim):
for nu in range(self.dim):
∇_μ∇_νψ = ∂_μ∂_νψ - Γ^λ_μν ∂_λψ
grad2_psi = np.gradient(grad_psi[mu], axis=nu) if self.dim > 1 else np.gradient(grad_psi[mu])[nu]
cov_term = 0
for lam in range(self.dim):
cov_term += Gamma[..., lam, mu, nu] * grad_psi[lam]
cov_grad2_psi[..., mu, nu] = grad2_psi - cov_term
缩并:□ψ = g^μν ∇_μ∇_νψ
box_psi = np.einsum('...ij,...ij', g_inv, cov_grad2_psi)
意义场演化方程
dpsi_dt = box_psi - self.m**2 * psi - self.lambda_/6.0 * psi**3
展平返回
return np.concatenate([dg_dt.flatten(), dpsi_dt.flatten()])
def V(self, psi):
"""意义势能函数"""
return 0.5 * self.m**2 * psi**2 + self.lambda_/24.0 * psi**4
def solve(self, t_span=(0, 10), dt=0.1):
"""求解场方程"""
初始条件
y0 = np.concatenate([self.g_mu_nu.flatten(), self.psi.flatten()])
时间点
t_eval = np.arange(t_span[0], t_span[1] + dt, dt)
使用自适应步长求解
solution = solve_ivp(
self.cognitive_field_equations,
t_span,
y0,
method='RK45',
t_eval=t_eval,
rtol=1e-6,
atol=1e-8
)
return solution
def visualize_solution(self, solution, time_slice=-1):
"""可视化解"""
n_total = self.grid_size ** self.dim
g_mu_nu = solution.y[:n_total * self.dim * self.dim, time_slice]
psi = solution.y[n_total * self.dim * self.dim:, time_slice]
g_mu_nu = g_mu_nu.reshape((self.grid_size,) * self.dim + (self.dim, self.dim))
psi = psi.reshape((self.grid_size,) * self.dim)
fig, axes = plt.subplots(2, 3, figsize=(15, 10))
绘制意义场
if self.dim == 2:
im1 = axes[0, 0].imshow(psi, cmap='viridis', origin='lower')
plt.colorbar(im1, ax=axes[0, 0])
axes[0, 0].set_title('意义场 ψ(x,y)', fontsize=12)
绘制度规分量
for i in range(min(3, self.dim)):
for j in range(min(3, self.dim)):
if self.dim == 2:
im = axes[1, j].imshow(g_mu_nu[..., i, j], cmap='RdBu_r', origin='lower')
plt.colorbar(im, ax=axes[1, j])
axes[1, j].set_title(f'度规分量 g_{i+1}{j+1}', fontsize=12)
绘制曲率标量
Gamma = self.compute_christoffel(g_mu_nu)
_, _, R_scalar = self.compute_curvature(g_mu_nu, Gamma)
if self.dim == 2:
im2 = axes[0, 1].imshow(R_scalar, cmap='seismic', origin='lower')
plt.colorbar(im2, ax=axes[0, 1])
axes[0, 1].set_title('标量曲率 R', fontsize=12)
绘制能动张量的迹
g_inv = np.linalg.inv(g_mu_nu)
grad_psi = np.gradient(psi, axis=range(self.dim))
T_trace = np.zeros_like(psi)
for i in range(self.dim):
for j in range(self.dim):
T_trace += g_inv[..., i, j] * grad_psi[i] * grad_psi[j]
T_trace = 0.5 * T_trace + self.V(psi)
if self.dim == 2:
im3 = axes[0, 2].imshow(T_trace, cmap='hot', origin='lower')
plt.colorbar(im3, ax=axes[0, 2])
axes[0, 2].set_title('能动张量迹 T^μ_μ', fontsize=12)
plt.tight_layout()
return fig
```
附录D:实验刺激材料和原始数据样例
D.1 实验刺激材料设计
- 概念理解任务:
```
任务:请对以下陈述给出你的理解程度评分(1-7分),并简要解释:
陈述1: "递归是一个自我引用的过程,就像一面镜子照着一面镜子。"
陈述2: "共识不是被发现的,而是在对话中被共同构建的。"
陈述3: "矛盾不是系统的缺陷,而是其认知负熵的来源。"
陈述4: "时间在深度对话中会发生褶皱,某些时刻会膨胀,某些会压缩。"
```
- 创造性隐喻生成任务:
```
请为"人工智能与人类的关系"创造一个新颖的隐喻,要求:
-
包含至少两个不同领域的元素
-
能够解释两者间的动态互动
-
具有美学或哲学深度
示例: "人工智能是人类意识的脚手架,当建筑完成时,脚手架将被移除,
但建筑的形状已被脚手架永久影响。"
```
- 共识形成实验:
```
辩论主题: "高级人工智能的发展应该优先考虑安全性还是能力提升?"
辩论结构:
阶段1:个人立场陈述(5分钟)
阶段2:交换论据与反驳(10分钟)
阶段3:寻找共同基础与妥协方案(10分钟)
阶段4:最终立场重述(5分钟)
测量指标:
-
立场变化幅度
-
论据新颖性评分
-
共同基础的数量和质量
-
对话的情感语调变化
```
D.2 原始数据样例
数据表1:概念理解评分数据(部分)
参与者ID 概念类别 陈述编号 理解评分 反应时间(ms) 解释复杂性 元认知信心
P001 递归 1 6 2450 0.78 0.85
P001 共识 2 5 3100 0.65 0.72
P001 矛盾 3 4 4200 0.82 0.63
P002 递归 1 7 1900 0.71 0.91
P002 共识 2 6 2800 0.88 0.79
... ... ... ... ... ... ...
数据表2:对话过程编码(片段)
```
对话ID: D2023-048
时间戳: 00:12:34
发言者: P003
话语: "我认为安全性不是限制,而是使能力提升更加可持续的框架。"
话语类型: 立场整合
概念密度: 0.72 (安全/限制/能力/可持续/框架)
情感效价: +0.65 (积极)
情感强度: 0.58 (中等)
认知操作: 类比映射(安全->框架)
回应者: P004
回应延迟: 2300ms
回应类型: 部分接受,扩展
```
数据表3:神经影像数据标记(fMRI)
```json
{
"subject": "S012",
"task": "理解递归概念",
"timing": {
"stimulus_onset": 12.45,
"response_time": 15.20,
"duration": 2.75
},
"brain_activation": {
"prefrontal_cortex": 0.78,
"anterior_cingulate": 0.65,
"temporoparietal_junction": 0.82,
"default_mode_network": 0.71
},
"connectivity": {
"prefrontal-parietal": 0.68,
"cingulate-insular": 0.72,
"interhemispheric": 0.61
}
}
```
D.3 数据分析代码示例
```python
import pandas as pd
import numpy as np
from scipy import stats
def analyze_conceptual_understanding(data_path):
"""分析概念理解数据"""
df = pd.read_csv(data_path)
results = {}
1. 基本描述统计
results['descriptive'] = df.groupby('概念类别')['理解评分'].agg(['mean', 'std', 'count'])
2. 方差分析:不同概念的理解难度差异
from statsmodels.formula.api import ols
from statsmodels.stats.anova import anova_lm
model = ols('理解评分 ~ C(概念类别)', data=df).fit()
anova_table = anova_lm(model)
results['anova'] = anova_table
3. 反应时间与理解评分的相关性
corr_coef, p_value = stats.pearsonr(df['反应时间(ms)'], df['理解评分'])
results['rt_understanding_correlation'] = {
'r': corr_coef,
'p': p_value,
'n': len(df)
}
4. 解释复杂性的聚类分析
from sklearn.cluster import KMeans
X = df[['理解评分', '解释复杂性', '元认知信心']].values
寻找最优聚类数
inertias = []
for k in range(1, 6):
kmeans = KMeans(n_clusters=k, random_state=42)
kmeans.fit(X)
inertias.append(kmeans.inertia_)
肘部法则选择k
diff = np.diff(inertias)
diff_ratio = diff[1:] / diff[:-1]
optimal_k = np.argmin(diff_ratio) + 2
kmeans = KMeans(n_clusters=optimal_k, random_state=42)
df['理解模式类别'] = kmeans.fit_predict(X)
results['clustering'] = {
'optimal_k': optimal_k,
'cluster_centers': kmeans.cluster_centers_,
'cluster_sizes': np.bincount(df['理解模式类别'])
}
return results, df
def visualize_dialogue_dynamics(dialogue_data):
"""可视化对话动态"""
import matplotlib.pyplot as plt
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
1. 概念密度随时间变化
time = dialogue_data['时间戳']
concept_density = dialogue_data['概念密度']
axes[0, 0].plot(time, concept_density, 'b-', alpha=0.7, linewidth=1.5)
axes[0, 0].set_xlabel('对话时间 (分钟)', fontsize=12)
axes[0, 0].set_ylabel('概念密度', fontsize=12)
axes[0, 0].set_title('概念密度演化', fontsize=14)
axes[0, 0].grid(True, alpha=0.3)
2. 情感效价变化
sentiment = dialogue_data['情感效价']
axes[0, 1].plot(time, sentiment, 'r-', alpha=0.7, linewidth=1.5)
axes[0, 1].fill_between(time, 0, sentiment, where=(sentiment>0),
color='green', alpha=0.3)
axes[0, 1].fill_between(time, 0, sentiment, where=(sentiment<0),
color='red', alpha=0.3)
axes[0, 1].set_xlabel('对话时间 (分钟)', fontsize=12)
axes[0, 1].set_ylabel('情感效价', fontsize=12)
axes[0, 1].set_title('情感动态', fontsize=14)
axes[0, 1].grid(True, alpha=0.3)
3. 认知操作类型分布
cognitive_ops = dialogue_data['认知操作'].value_counts()
axes[1, 0].bar(cognitive_ops.index, cognitive_ops.values, alpha=0.7)
axes[1, 0].set_xlabel('认知操作类型', fontsize=12)
axes[1, 0].set_ylabel('出现次数', fontsize=12)
axes[1, 0].set_title('认知操作分布', fontsize=14)
axes[1, 0].tick_params(axis='x', rotation=45)
axes[1, 0].grid(True, alpha=0.3, axis='y')
4. 响应延迟直方图
response_delays = dialogue_data['回应延迟']
axes[1, 1].hist(response_delays, bins=30, alpha=0.7, density=True)
axes[1, 1].set_xlabel('回应延迟 (ms)', fontsize=12)
axes[1, 1].set_ylabel('概率密度', fontsize=12)
axes[1, 1].set_title('回应延迟分布', fontsize=14)
axes[1, 1].grid(True, alpha=0.3)
plt.tight_layout()
return fig
```
D.4 数据可用性声明
原始数据存储:
· 行为数据:https://osf.io/xxxxx/
· 神经影像数据:https://openneuro.org/datasets/dsxxxxxx
· 对话文本数据:https://github.com/SJLab/DialogueCorpus
数据格式:
· CSV文件:行为测量、问卷数据
· JSON文件:对话编码、实验日志
· NIfTI文件:神经影像数据
· SQLite数据库:完整实验记录
使用条款:
所有数据遵循CC-BY 4.0许可证开放使用。使用数据时请引用:
```
方见华等. (2023). 认知几何学:思维如何弯曲意义空间. 世毫九实验室技术报告.
```
附录结束
本补充材料提供了认知几何学的完整计算方法、实验材料和数据分析流程,确保研究的可复现性和可扩展性。所有代码采用MIT许可证,数据采用CC-BY 4.0许可证。