【YOLOX】《YOLOX:Exceeding YOLO Series in 2021》

arXiv-2021


文章目录

  • [1 Background and Motivation](#1 Background and Motivation)
  • [2 Related Work](#2 Related Work)
  • [3 Advantages / Contributions](#3 Advantages / Contributions)
  • [4 Method](#4 Method)
  • [5 Experiments](#5 Experiments)
    • [5.1 Datasets and Metrics](#5.1 Datasets and Metrics)
  • [6 Conclusion(own)](#6 Conclusion(own))

1 Background and Motivation

2 Related Work

3 Advantages / Contributions

4 Method


深入浅出Yolo系列之Yolox核心基础完整讲解

(1)输入端,mosaic 和 mixup,最后 15 个 epochs 会关闭

(2)预测头

解耦头会收敛更快,精度也会更高,但会增加运算的复杂度

anchor free,以 640 输入为例,总预测数量 ( 20 ∗ 20 + 40 ∗ 40 + 80 ∗ 80 ) ∗ ( 80 + 1 + 4 ) = 8400 ∗ 85 (20*20 + 40*40 + 80*80) * (80 + 1 +4) = 8400* 85 (20∗20+40∗40+80∗80)∗(80+1+4)=8400∗85

anchor based,以 640 输入为例,总预测数量 3 ∗ ( 20 ∗ 20 + 40 ∗ 40 + 80 ∗ 80 ) ∗ ( 80 + 1 + 4 ) = 3 ∗ 8400 ∗ 85 3*(20*20 + 40*40 + 80*80) * (80 + 1 +4) = 3*8400* 85 3∗(20∗20+40∗40+80∗80)∗(80+1+4)=3∗8400∗85

正负样本分配:初步筛选、SimOTA

初步筛选

a. 根据中心点来判断:寻找anchor_box中心点,落在groundtruth_boxes矩形范围的所有anchors

b.根据目标框来判断:以groundtruth中心点为基准,设置边长为5的正方形,挑选在正方形内的所有锚框。

这一步还是有候选框或者说 anchor 的概念的

因为不同层金字塔特征图上的空间位置映射为原图,还是有大小的

精细筛选---SimOTA

a.初筛正样本信息提取

b.Loss 函数计算

c.cost 成本计算

d.SimOTA 求解

假设初步筛选从 8400 筛选到只剩 1000, simOTA中,会选 cost 最小的前 k 个 作为正样本

可能出现共用情况,一个正样本分配了多个 GT

选 cost 最小的

5 Experiments

5.1 Datasets and Metrics

6 Conclusion(own)

YOLOX作者刘松涛博士:高性能目标检测的最新实践


解耦的好处在于:在检测的过程中分类需要的特征和回归所需要的特征不同,所以在 Decoupled Head 中进行解耦处理后学习的过程会变得更加简单。


相关推荐
凪卄1213几秒前
图像预处理 二
人工智能·python·深度学习·计算机视觉·pycharm
碳酸的唐18 分钟前
Inception网络架构:深度学习视觉模型的里程碑
网络·深度学习·架构
AI赋能19 分钟前
自动驾驶训练-tub详解
人工智能·深度学习·自动驾驶
seasonsyy19 分钟前
1.安装anaconda详细步骤(含安装截图)
python·深度学习·环境配置
deephub27 分钟前
AI代理性能提升实战:LangChain+LangGraph内存管理与上下文优化完整指南
人工智能·深度学习·神经网络·langchain·大语言模型·rag
go54631584651 小时前
基于深度学习的食管癌右喉返神经旁淋巴结预测系统研究
图像处理·人工智能·深度学习·神经网络·算法
Blossom.1181 小时前
基于深度学习的图像分类:使用Capsule Networks实现高效分类
人工智能·python·深度学习·神经网络·机器学习·分类·数据挖掘
宇称不守恒4.01 小时前
2025暑期—05神经网络-卷积神经网络
深度学习·神经网络·cnn
格林威2 小时前
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现沙滩小人检测识别(C#代码UI界面版)
人工智能·深度学习·数码相机·yolo·计算机视觉
巫婆理发2223 小时前
神经网络(多层感知机)(第二课第二周)
人工智能·深度学习·神经网络