【YOLOX】《YOLOX:Exceeding YOLO Series in 2021》

arXiv-2021


文章目录

  • [1 Background and Motivation](#1 Background and Motivation)
  • [2 Related Work](#2 Related Work)
  • [3 Advantages / Contributions](#3 Advantages / Contributions)
  • [4 Method](#4 Method)
  • [5 Experiments](#5 Experiments)
    • [5.1 Datasets and Metrics](#5.1 Datasets and Metrics)
  • [6 Conclusion(own)](#6 Conclusion(own))

1 Background and Motivation

2 Related Work

3 Advantages / Contributions

4 Method


深入浅出Yolo系列之Yolox核心基础完整讲解

(1)输入端,mosaic 和 mixup,最后 15 个 epochs 会关闭

(2)预测头

解耦头会收敛更快,精度也会更高,但会增加运算的复杂度

anchor free,以 640 输入为例,总预测数量 ( 20 ∗ 20 + 40 ∗ 40 + 80 ∗ 80 ) ∗ ( 80 + 1 + 4 ) = 8400 ∗ 85 (20*20 + 40*40 + 80*80) * (80 + 1 +4) = 8400* 85 (20∗20+40∗40+80∗80)∗(80+1+4)=8400∗85

anchor based,以 640 输入为例,总预测数量 3 ∗ ( 20 ∗ 20 + 40 ∗ 40 + 80 ∗ 80 ) ∗ ( 80 + 1 + 4 ) = 3 ∗ 8400 ∗ 85 3*(20*20 + 40*40 + 80*80) * (80 + 1 +4) = 3*8400* 85 3∗(20∗20+40∗40+80∗80)∗(80+1+4)=3∗8400∗85

正负样本分配:初步筛选、SimOTA

初步筛选

a. 根据中心点来判断:寻找anchor_box中心点,落在groundtruth_boxes矩形范围的所有anchors

b.根据目标框来判断:以groundtruth中心点为基准,设置边长为5的正方形,挑选在正方形内的所有锚框。

这一步还是有候选框或者说 anchor 的概念的

因为不同层金字塔特征图上的空间位置映射为原图,还是有大小的

精细筛选---SimOTA

a.初筛正样本信息提取

b.Loss 函数计算

c.cost 成本计算

d.SimOTA 求解

假设初步筛选从 8400 筛选到只剩 1000, simOTA中,会选 cost 最小的前 k 个 作为正样本

可能出现共用情况,一个正样本分配了多个 GT

选 cost 最小的

5 Experiments

5.1 Datasets and Metrics

6 Conclusion(own)

YOLOX作者刘松涛博士:高性能目标检测的最新实践


解耦的好处在于:在检测的过程中分类需要的特征和回归所需要的特征不同,所以在 Decoupled Head 中进行解耦处理后学习的过程会变得更加简单。


相关推荐
Watermelo6171 小时前
从DeepSeek大爆发看AI革命困局:大模型如何突破算力囚笼与信任危机?
人工智能·深度学习·神经网络·机器学习·ai·语言模型·自然语言处理
Donvink1 小时前
【DeepSeek-R1背后的技术】系列九:MLA(Multi-Head Latent Attention,多头潜在注意力)
人工智能·深度学习·语言模型·transformer
计算机软件程序设计1 小时前
深度学习在图像识别中的应用-以花卉分类系统为例
人工智能·深度学习·分类
向哆哆3 小时前
卷积与动态特征选择:重塑YOLOv8的多尺度目标检测能力
yolo·目标检测·目标跟踪·yolov8
xiao5kou4chang6kai44 小时前
遥感影像目标检测:从CNN(Faster-RCNN)到Transformer(DETR)
目标检测·cnn·transformer·遥感影像
lihuayong5 小时前
计算机视觉:主流数据集整理
人工智能·计算机视觉·mnist数据集·coco数据集·图像数据集·cifar-10数据集·imagenet数据集
終不似少年遊*5 小时前
词向量与词嵌入
人工智能·深度学习·nlp·机器翻译·词嵌入
DCcsdnDC5 小时前
Airsim仿真双目相机时间戳不同步的解决办法
计算机视觉
夏莉莉iy7 小时前
[MDM 2024]Spatial-Temporal Large Language Model for Traffic Prediction
人工智能·笔记·深度学习·机器学习·语言模型·自然语言处理·transformer
pchmi8 小时前
CNN常用卷积核
深度学习·神经网络·机器学习·cnn·c#