【给自己挖个坑】三维视频重建(NSR技术)-KIRI Engine

文章目录

感慨:人工智能那么牛,计算机视觉和深度学习要学起来啊。记得几年前自学机器学习实现了图像验证码识别系统,为公司节省了可观的打码费用。近几年工作中和图像打交道比较多,冥冥中是要我在图形处理领域深耕吗!


最近,一款名为KIRI Engine的3D扫描APP推出了无特征点物体扫描模式,该模式通过神经表面重建(NSR)技术实现了对光滑物体的高质量三维重建。这标志着手机3D扫描技术迈入了一个新的阶段。

KIRI Engine通过集成NSR技术实现了对无特征点物体的扫描。用户只需要绕着物体稳定录制一段视频,上传到云端后,算法自动分析视频生成三维模型。

好多专业词不懂,怎么办,找AI老师来帮忙!

以下是我和AI的对话

通过手机拍摄物体的视频,再根据视频生成三维模型,这个可实现吗

AI答:

是的,通过手机拍摄物体的视频,再根据视频生成三维模型是可行的。

这种技术被称为三维视频重建 ,它可以通过分析视频中的图像序列,根据物体的运动和形状变化来生成三维模型。

在实现中,通常会使用计算机视觉和深度学习技术来对视频进行分析和处理,从而生成三维模型。

目前,已经有许多手机应用程序支持这种技术,可以让用户通过手机拍摄的视频来生成三维模型。

这才知道,这是三维视频重建

我想开发类似上面的手机应用程序,如何开发呢

AI答:

如果您想开发类似于三维视频重建的手机应用程序,可以遵循以下步骤:

1、了解计算机视觉和深度学习技术。

三维视频重建是基于计算机视觉和深度学习技术实现的,因此您需要了解这些技术的基本原理和实现方法。

2、选择合适的技术栈。

在实现三维视频重建时,可以选择多种技术栈。例如,您可以使用OpenCV和TensorFlow等开源库来实现计算机视觉和深度学习算法。

3、收集数据。

为了训练深度学习模型,您需要收集大量的数据。这些数据可以是从手机摄像头中获取的视频数据,也可以是从其他来源获取的数据。

4、训练模型。

使用收集到的数据,训练深度学习模型,使其能够准确地分析和处理视频数据。

实现应用程序。使用训练好的模型,实现手机应用程序的功能。在实现中,需要考虑如何优化模型的性能,使其能够在手机等移动设备上运行。

5、测试和优化。

在实现应用程序后,需要对其进行测试和优化,以确保其性能和准确性。

总之,如果您想开发类似于三维视频重建的手机应用程序,需要具备计算机视觉和深度学习技术的知识,并且需要收集大量的数据来训练深度学习模型。

在实现应用程序时,需要考虑如何优化模型的性能,使其能够在手机等移动设备上运行。

看了以上回答,还是洗洗睡吧

NSR技术的实现原理是什么呢

开始好奇了

AI答:

NSR技术(Non-Stereo Sensor Registration 即非立体传感器注册)是一种基于模板匹配的图像检测技术 ,其实现原理如下:

首先,需要准备一个包含目标物体的模板图像。这个模板图像可以是从真实场景中获取的,也可以是从图像库中获取的。

在实际场景中,使用摄像头采集图像序列。这些图像序列包含了目标物体的不同姿态和位置。

对每个图像,使用图像处理技术对其进行预处理,包括灰度化、归一化和滤波等。

将预处理后的图像与模板图像进行匹配。匹配可以使用模板匹配算法或基于特征点的匹配算法实现。

在匹配过程中,可以使用一些技术来提高匹配的准确性,例如颜色平滑、特征点选择和误差估计等。

在匹配完成后,可以使用优化算法来进一步提高匹配的准确性,例如约束优化、非局部均值去噪和全局优化等。

最终,通过对匹配结果进行分析和处理,可以得到目标物体在图像序列中的三维位置和姿态

总之,NSR技术的实现原理是基于模板匹配的图像检测技术,通过对模板图像和实际场景图像进行匹配,可以得到目标物体在图像序列中的三维位置和姿态。在实现中,需要考虑如何提高匹配的准确性和优化匹配结果,以获得更准确的三维信息。

有案例吗

越发好奇

是的,NSR技术已经被广泛应用于许多领域,例如机器人导航、自动驾驶、医疗影像处理和虚拟现实等。以下是一些使用NSR技术的案例:

机器人导航:NSR技术可以用于机器人的视觉定位和避障。通过在机器人上安装摄像头,可以采集图像序列,然后使用NSR技术对图像序列中的目标物体进行检测和定位,从而实现机器人的自主导航和避障。

自动驾驶:NSR技术可以用于自动驾驶车辆的障碍物检测和避障。通过在车辆上安装摄像头,可以采集图像序列,然后使用NSR技术对图像序列中的障碍物进行检测和定位,从而实现车辆的自主行驶和避障。

医疗影像处理:NSR技术可以用于医疗影像处理中的病灶检测和诊断。通过对病人的影像数据进行处理,可以生成模板图像,然后使用NSR技术对实际场景的影像数据进行匹配,从而实现病灶的检测和诊断。

虚拟现实:NSR技术可以用于虚拟现实中的物体检测和交互。通过在虚拟环境中放置模板物体,然后使用NSR技术对实际场景中的物体进行匹配,从而实现虚拟现实中的物体检测和交互。

总之,NSR技术已经被广泛应用于许多领域,其应用案例涵盖了机器人导航、自动驾驶、医疗影像处理和虚拟现实等。在实际应用中,需要根据具体的应用场景和需求,选择合适的技术栈和算法,以获得更准确和可靠的检测结果。

我是名Java工程师,如何学习NSR技术呢

AI答:如果您是一名Java工程师,想要学习NSR技术,可以按照以下步骤进行:

了解基础知识:首先,需要了解计算机视觉和深度学习的基础知识,包括图像处理、模板匹配、机器学习和深度学习等方面的知识。可以通过阅读相关书籍、学习视频课程和参加在线培训等方式进行学习。

选择合适的技术栈:在学习NSR技术时,需要选择合适的技术栈。可以选择Java和OpenCV等开源库来实现计算机视觉和深度学习算法。

这个我了解啊

收集数据:为了训练深度学习模型,需要收集大量的数据。可以从网上获取相关的数据集,也可以自己采集和标注数据。

训练模型:使用收集到的数据,训练深度学习模型,使其能够准确地分析和处理图像数据。

实现应用程序:使用训练好的模型,实现NSR技术的应用程序。在实现中,需要考虑如何优化模型的性能,使其能够在移动设备等资源有限的环境中运行。

测试和优化:在实现应用程序后,需要对其进行测试和优化,以确保其性能和准确性。

总之,如果您是一名Java工程师,想要学习NSR技术,需要具备计算机视觉和深度学习的基础知识,并且需要选择合适的技术栈和数据集来训练深度学习模型。在实现应用程序时,需要考虑如何优化模型的性能,使其能够在移动设备等资源有限的环境中运行。

我睡了,你呢?

相关推荐
上海合宙LuatOS1 小时前
LuatOS核心库API——【audio 】
java·网络·单片机·嵌入式硬件·物联网·音视频·硬件工程
Yeats_Liao2 小时前
评估体系构建:基于自动化指标与人工打分的双重验证
运维·人工智能·深度学习·算法·机器学习·自动化
Android系统攻城狮2 小时前
Android16进阶之音频播放定位MediaPlayer.seekTo调用流程与实战(二百二十七)
音视频·mediaplayer·android16·音频进阶·音频性能实战
Tadas-Gao2 小时前
缸中之脑:大模型架构的智能幻象与演进困局
人工智能·深度学习·机器学习·架构·大模型·llm
2301_818730563 小时前
transformer(上)
人工智能·深度学习·transformer
木枷3 小时前
Online Process Reward Learning for Agentic Reinforcement Learning
人工智能·深度学习·机器学习
晚霞的不甘3 小时前
Flutter for OpenHarmony 可视化教学:A* 寻路算法的交互式演示
人工智能·算法·flutter·架构·开源·音视频
陈天伟教授3 小时前
人工智能应用- 语言处理:02.机器翻译:规则方法
人工智能·深度学习·神经网络·语言模型·自然语言处理·机器翻译
却道天凉_好个秋3 小时前
Tensorflow数据增强(三):高级裁剪
人工智能·深度学习·tensorflow
听麟3 小时前
HarmonyOS 6.0+ 跨端智慧政务服务平台开发实战:多端协同办理与电子证照管理落地
笔记·华为·wpf·音视频·harmonyos·政务