Elasticsearch:使用 Open AI 和 Langchain 的 RAG - Retrieval Augmented Generation (三)

这是继之前文章:

的续篇。在今天的文章中,我将详述如何使用 ElasticsearchStore。这也是被推荐的使用方法。如果你还没有设置好自己的环境,请详细阅读第一篇文章。

创建应用并展示

安装包

#!pip3 install langchain

导入包

from dotenv import load_dotenv
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import ElasticsearchStore
from langchain.text_splitter import CharacterTextSplitter
from urllib.request import urlopen
import os, json

load_dotenv()
 
openai_api_key=os.getenv('OPENAI_API_KEY')
elastic_user=os.getenv('ES_USER')
elastic_password=os.getenv('ES_PASSWORD')
elastic_endpoint=os.getenv("ES_ENDPOINT")
elastic_index_name='elasticsearch-store'

添加文档并将文档分成段落

with open('workplace-docs.json') as f:
   workplace_docs = json.load(f)
 
print(f"Successfully loaded {len(workplace_docs)} documents")
metadata = []
content = []

for doc in workplace_docs:
  content.append(doc["content"])
  metadata.append({
      "name": doc["name"],
      "summary": doc["summary"],
      "rolePermissions":doc["rolePermissions"]
  })

text_splitter = CharacterTextSplitter(chunk_size=50, chunk_overlap=0)
docs = text_splitter.create_documents(content, metadatas=metadata)

把数据写入到 Elasticsearch

from elasticsearch import Elasticsearch

embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
 
url = f"https://{elastic_user}:{elastic_password}@{elastic_endpoint}:9200"
connection = Elasticsearch(url, ca_certs = "./http_ca.crt", verify_certs = True)

 
es = ElasticsearchStore.from_documents( 
                            docs,
                            embedding = embeddings, 
                            es_url = url, 
                            es_connection = connection,
                            index_name = elastic_index_name, 
                            es_user = elastic_user,
                            es_password = elastic_password)

展示结果

def showResults(output):
  print("Total results: ", len(output))
  for index in range(len(output)):
    print(output[index])
query = "work from home policy"
result = es.similarity_search(query=query)

showResults(result)

我们在 Kibana 的 Dev Tools 里打入如下的命令:

embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)


es = ElasticsearchStore(
    es_url = url,
    es_connection = connection,
    es_user=elastic_user,
    es_password=elastic_password,
    embedding=embeddings,
    index_name=elastic_index_name,
    strategy=ElasticsearchStore.ApproxRetrievalStrategy(
        hybrid=True
    )
)

es.similarity_search("work from home policy")

造成这个错误的原因是因为当前的 License 模式不支持 RRF。我们去 Kibana 启动当前的授权:

我们再次运行代码:

embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)


es = ElasticsearchStore(
    es_url = url,
    es_connection = connection,
    es_user=elastic_user,
    es_password=elastic_password,
    embedding=embeddings,
    index_name=elastic_index_name,
    strategy=ElasticsearchStore.ExactRetrievalStrategy()
)

es.similarity_search("work from home policy")

在这个步骤中,我们需要启动 ELSER。有关 ELSER 的启动,请参阅文章 "Elasticsearch:部署 ELSER - Elastic Learned Sparse EncoderR"。

embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)

es = ElasticsearchStore.from_documents(
    docs,
    es_url = url,
    es_connection = connection,
    es_user=elastic_user,
    es_password=elastic_password,
    index_name=elastic_index_name+"-"+"elser",
    strategy=ElasticsearchStore.SparseVectorRetrievalStrategy()
)

es.similarity_search("work from home policy")

在运行完上面的代码后,我们可以在 Kibana 中进行查看所生成的字段:

上面代码的整个 jupyter notebook 可以在地址 https://github.com/liu-xiao-guo/semantic_search_es/blob/main/ElasticsearchStore.ipynb 下载。

相关推荐
qzhqbb2 小时前
基于统计方法的语言模型
人工智能·语言模型·easyui
冷眼看人间恩怨3 小时前
【话题讨论】AI大模型重塑软件开发:定义、应用、优势与挑战
人工智能·ai编程·软件开发
2401_883041083 小时前
新锐品牌电商代运营公司都有哪些?
大数据·人工智能
青云交3 小时前
大数据新视界 -- 大数据大厂之 Impala 性能优化:融合机器学习的未来之路(上 (2-1))(11/30)
大数据·计算资源·应用案例·数据交互·impala 性能优化·机器学习融合·行业拓展
AI极客菌4 小时前
Controlnet作者新作IC-light V2:基于FLUX训练,支持处理风格化图像,细节远高于SD1.5。
人工智能·计算机视觉·ai作画·stable diffusion·aigc·flux·人工智能作画
阿_旭4 小时前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^4 小时前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
Power20246665 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k5 小时前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
好奇龙猫5 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法