Elasticsearch:RAG vs Fine-tunning (大语言模型微调)

如果你对 RAG 还不是很熟悉的话,请阅读之前的文章 "Elasticsearch:什么是检索增强生成 - RAG?"。你可以阅读文章 "Elasticsearch:在你的数据上训练大型语言模型 (LLM)" 来了解更多关于如何训练你的模型。在今天的文章中,我们来讲述 RAG 及 大语言模型的优缺点。这篇文章旨在优化语言模型的终极指南。

介绍

你是否正在努力充分利用大型语言模型 (LLM)? 你不是一个人。 好消息是,你可以选择:检索增强生成 (RAG) 和微调。 但哪一款适合你呢? 让我们来看看吧。

两大巨头:RAG 和微调

  • RAG :想象一下你的 LLM 是一名侦探。 RAG 允许它在解决案件(回答你的查询)之前从各种来源搜索线索(数据)。
    • 该方法帮助模型搜索并使用外部信息来回答问题或生成文本。 可以把它想象成一个学生在回答问题之前先在教科书中查找事实。

在很多的情况下,我们可以很方便地使用 Elasticsearch 来作为向量数据库,并轻松地实现 RAG。详细实现请参阅文章 "ChatGPT 和 Elasticsearch:OpenAI 遇见私有数据(一)"。

  • 微调 :将其视为 LLM 的专门训练营。 它针对特定游戏(任务)磨练自己的技能,使其成为明星玩家。
    • 在这里,你可以根据特定数据训练已经构建的模型,以使其更好地完成特定任务。 这就像一位厨师已经知道如何烹饪,但参加了一门特殊的课程来改进特定的食谱。

是什么让他们与众不同

  • 目标:RAG 是你的数据侦探,而微调则将你的模型变成专家。
  • 轻松又省钱:RAG 就像按照菜谱做饭一样; 它更容易而且通常更便宜。 Fine-Tuning 就像创造一道美食; 它很复杂,但可以更令人满意。

风险:为什么你的选择很重要

明智地选择,否则你最终可能会得到一个低效、昂贵且难以管理的模型。 以下是如何避免陷阱。

你的清单:做出正确的选择

  • 你需要外部信息吗? 选择 RAG。
  • 想要自定义行为吗? 选择微调。
  • 有很多具体数据吗? 微调会发光。
  • 数据不断变化? RAG 保持更新。
  • 需要解释模型的答案吗? RAG 提供更高的透明度。

现实世界场景:哪一个获胜?

我们将探讨如何在 RAG 和微调之间进行选择,以完成总结文章、在公司环境中回答问题以及自动化客户支持等任务。

超越基础:需要考虑的其他因素

从可扩展性和实时需求到道德和现有系统,我们将讨论其他可能使天平有利于一种方法而不是另一种方法的因素。

结论:你的成功之路

请记住,最好的方法是符合你的特定需求和目标的方法。 在许多情况下,你需要同时使用两者。 因此,评估、选择和优化你的 LLM 成功之路!

更多有关 Elasticsearch 在大数据及人工智能方面的文章,请参阅 "AI"。

相关推荐
qzhqbb1 小时前
基于统计方法的语言模型
人工智能·语言模型·easyui
冷眼看人间恩怨1 小时前
【话题讨论】AI大模型重塑软件开发:定义、应用、优势与挑战
人工智能·ai编程·软件开发
2401_883041081 小时前
新锐品牌电商代运营公司都有哪些?
大数据·人工智能
青云交2 小时前
大数据新视界 -- 大数据大厂之 Impala 性能优化:融合机器学习的未来之路(上 (2-1))(11/30)
大数据·计算资源·应用案例·数据交互·impala 性能优化·机器学习融合·行业拓展
AI极客菌2 小时前
Controlnet作者新作IC-light V2:基于FLUX训练,支持处理风格化图像,细节远高于SD1.5。
人工智能·计算机视觉·ai作画·stable diffusion·aigc·flux·人工智能作画
阿_旭2 小时前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^3 小时前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
Power20246663 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k4 小时前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
好奇龙猫4 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法