C# Onnx LSTR 基于Transformer的端到端实时车道线检测

目录

效果

模型信息

项目

代码

下载


效果

模型信息

lstr_360x640.onnx

Inputs


name:input_rgb

tensor:Float[1, 3, 360, 640]

name:input_mask

tensor:Float[1, 1, 360, 640]


Outputs


name:pred_logits

tensor:Float[1, 7, 2]

name:pred_curves

tensor:Float[1, 7, 8]

name:foo_out_1

tensor:Float[1, 7, 2]

name:foo_out_2

tensor:Float[1, 7, 8]

name:weights

tensor:Float[1, 240, 240]


项目

VS2022+.net framework 4.8

OpenCvSharp 4.8

Microsoft.ML.OnnxRuntime 1.16.2

代码

cs 复制代码
using Microsoft.ML.OnnxRuntime.Tensors;
using Microsoft.ML.OnnxRuntime;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Windows.Forms;
using System.Linq;
using System.IO;
using System.Text;
using System.Drawing;

namespace Onnx_Demo
{
    public partial class frmMain : Form
    {
        public frmMain()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";

        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;

        int inpWidth;
        int inpHeight;

        Mat image;

        string model_path = "";

        float[] factors = new float[2];

        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        Tensor<float> mask_tensor;
        List<NamedOnnxValue> input_ontainer;

        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;

        Tensor<float> result_tensors;

        int len_log_space = 50;
        float[] log_space;

        float[] mean = new float[] { 0.485f, 0.456f, 0.406f };
        float[] std = new float[] { 0.229f, 0.224f, 0.225f };

        Scalar[] lane_colors = new Scalar[] { new Scalar(68, 65, 249), new Scalar(44, 114, 243), new Scalar(30, 150, 248), new Scalar(74, 132, 249), new Scalar(79, 199, 249), new Scalar(109, 190, 144), new Scalar(142, 144, 77), new Scalar(161, 125, 39) };

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;

            pictureBox1.Image = null;
            pictureBox2.Image = null;
            textBox1.Text = "";

            image_path = ofd.FileName;
            pictureBox1.Image = new System.Drawing.Bitmap(image_path);
            image = new Mat(image_path);
        }

        private void Form1_Load(object sender, EventArgs e)
        {

            // 创建输入容器
            input_ontainer = new List<NamedOnnxValue>();

            // 创建输出会话
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行

            // 创建推理模型类,读取本地模型文件
            model_path = "model/lstr_360x640.onnx";

            inpWidth = 640;
            inpHeight = 360;

            onnx_session = new InferenceSession(model_path, options);

            // 创建输入容器
            input_ontainer = new List<NamedOnnxValue>();

            FileStream fileStream = new FileStream("model/log_space.bin", FileMode.Open);
            BinaryReader br = new BinaryReader(fileStream, Encoding.UTF8);

            log_space = new float[len_log_space];

            byte[] byteTemp;
            float fTemp;
            for (int i = 0; i < len_log_space; i++)
            {
                byteTemp = br.ReadBytes(4);
                fTemp = BitConverter.ToSingle(byteTemp, 0);
                log_space[i] = fTemp;
            }
            br.Close();

            image_path = "test_img/0.jpg";
            pictureBox1.Image = new Bitmap(image_path);

        }

        private unsafe void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }
            textBox1.Text = "检测中,请稍等......";
            pictureBox2.Image = null;
            System.Windows.Forms.Application.DoEvents();

            //图片缩放
            image = new Mat(image_path);

            int img_height = image.Rows;
            int img_width = image.Cols;

            Mat resize_image = new Mat();
            Cv2.Resize(image, resize_image, new OpenCvSharp.Size(inpWidth, inpHeight));

            int row = resize_image.Rows;
            int col = resize_image.Cols;

            float[] input_tensor_data = new float[1 * 3 * inpHeight * inpWidth];
            for (int c = 0; c < 3; c++)
            {
                for (int i = 0; i < row; i++)
                {
                    for (int j = 0; j < col; j++)
                    {
                        float pix = ((byte*)(resize_image.Ptr(i).ToPointer()))[j * 3 + c];
                        input_tensor_data[c * row * col + i * col + j] = (float)((pix / 255.0 - mean[c]) / std[c]);
                    }
                }
            }
            input_tensor = new DenseTensor<float>(input_tensor_data, new[] { 1, 3, inpHeight, inpWidth });

            float[] input_mask_data = new float[1 * 1 * inpHeight * inpWidth];
            for (int i = 0; i < input_mask_data.Length; i++)
            {
                input_mask_data[i] = 0.0f;
            }
            mask_tensor = new DenseTensor<float>(input_mask_data, new[] { 1, 1, inpHeight, inpWidth });

            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_ontainer.Add(NamedOnnxValue.CreateFromTensor("input_rgb", input_tensor));
            input_ontainer.Add(NamedOnnxValue.CreateFromTensor("input_mask", mask_tensor));

            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_ontainer);
            dt2 = DateTime.Now;

            //将输出结果转为DisposableNamedOnnxValue数组
            results_onnxvalue = result_infer.ToArray();

            float[] pred_logits = results_onnxvalue[0].AsTensor<float>().ToArray();
            float[] pred_curves = results_onnxvalue[1].AsTensor<float>().ToArray();

            int logits_h = results_onnxvalue[0].AsTensor<float>().Dimensions[1];
            int logits_w = results_onnxvalue[0].AsTensor<float>().Dimensions[2];
            int curves_w = results_onnxvalue[1].AsTensor<float>().Dimensions[2];

            List<int> good_detections = new List<int>();
            List<List<OpenCvSharp.Point>> lanes = new List<List<OpenCvSharp.Point>>();
            for (int i = 0; i < logits_h; i++)
            {
                float max_logits = -10000;
                int max_id = -1;
                for (int j = 0; j < logits_w; j++)
                {
                    float data = pred_logits[i * logits_w + j];
                    if (data > max_logits)
                    {
                        max_logits = data;
                        max_id = j;
                    }
                }
                if (max_id == 1)
                {
                    good_detections.Add(i);
                    int index = i * curves_w;
                    List<OpenCvSharp.Point> lane_points = new List<OpenCvSharp.Point>();
                    for (int k = 0; k < len_log_space; k++)
                    {
                        float y = pred_curves[0 + index] + log_space[k] * (pred_curves[1 + index] - pred_curves[0 + index]);
                        float x = (float)(pred_curves[2 + index] / Math.Pow(y - pred_curves[3 + index], 2.0) + pred_curves[4 + index] / (y - pred_curves[3 + index]) + pred_curves[5 + index] + pred_curves[6 + index] * y - pred_curves[7 + index]);
                        lane_points.Add(new OpenCvSharp.Point(x * img_width, y * img_height));
                    }
                    lanes.Add(lane_points);
                }
            }

            Mat result_image = image.Clone();

            //draw lines
            List<int> right_lane = new List<int>();
            List<int> left_lane = new List<int>();
            for (int i = 0; i < good_detections.Count; i++)
            {
                if (good_detections[i] == 0)
                {
                    right_lane.Add(i);
                }
                if (good_detections[i] == 5)
                {
                    left_lane.Add(i);
                }
            }

            if (right_lane.Count() == left_lane.Count())
            {
                Mat lane_segment_img = result_image.Clone();

                List<OpenCvSharp.Point> points = new List<OpenCvSharp.Point>();

                points.AddRange(lanes.First());

                points.Reverse();

                points.AddRange(lanes[left_lane[0]]);

                Cv2.FillConvexPoly(lane_segment_img, points, new Scalar(0, 191, 255));
                Cv2.AddWeighted(result_image, 0.7, lane_segment_img, 0.3, 0, result_image);
            }

            for (int i = 0; i < lanes.Count(); i++)
            {
                for (int j = 0; j < lanes[i].Count(); j++)
                {
                    Cv2.Circle(result_image, lanes[i][j], 3, lane_colors[good_detections[i]], -1);
                }
            }

            pictureBox2.Image = new System.Drawing.Bitmap(result_image.ToMemoryStream());
            textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
        }

        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }

        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }
    }
}

下载

源码下载

相关推荐
007tg21 分钟前
从ChatGPT家长控制功能看AI合规与技术应对策略
人工智能·chatgpt·企业数据安全
Memene摸鱼日报24 分钟前
「Memene 摸鱼日报 2025.9.11」腾讯推出命令行编程工具 CodeBuddy Code, ChatGPT 开发者模式迎来 MCP 全面支持
人工智能·chatgpt·agi
linjoe991 小时前
【Deep Learning】Ubuntu配置深度学习环境
人工智能·深度学习·ubuntu
薄荷撞~可乐1 小时前
C#Task(Api)应用
开发语言·c#
先做个垃圾出来………2 小时前
残差连接的概念与作用
人工智能·算法·机器学习·语言模型·自然语言处理
AI小书房2 小时前
【人工智能通识专栏】第十三讲:图像处理
人工智能
fanstuck2 小时前
基于大模型的个性化推荐系统实现探索与应用
大数据·人工智能·语言模型·数据挖掘
多看书少吃饭4 小时前
基于 OpenCV 的眼球识别算法以及青光眼算法识别
人工智能·opencv·计算机视觉
IT学长编程4 小时前
计算机毕业设计 基于大数据技术的医疗数据分析与研究 Python 大数据毕业设计 Hadoop毕业设计选题【附源码+文档报告+安装调试】
大数据·hadoop·机器学习·数据分析·毕业设计·毕业论文·医疗数据分析