C# Onnx LSTR 基于Transformer的端到端实时车道线检测

目录

效果

模型信息

项目

代码

下载


效果

模型信息

lstr_360x640.onnx

Inputs


name:input_rgb

tensor:Float[1, 3, 360, 640]

name:input_mask

tensor:Float[1, 1, 360, 640]


Outputs


name:pred_logits

tensor:Float[1, 7, 2]

name:pred_curves

tensor:Float[1, 7, 8]

name:foo_out_1

tensor:Float[1, 7, 2]

name:foo_out_2

tensor:Float[1, 7, 8]

name:weights

tensor:Float[1, 240, 240]


项目

VS2022+.net framework 4.8

OpenCvSharp 4.8

Microsoft.ML.OnnxRuntime 1.16.2

代码

cs 复制代码
using Microsoft.ML.OnnxRuntime.Tensors;
using Microsoft.ML.OnnxRuntime;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Windows.Forms;
using System.Linq;
using System.IO;
using System.Text;
using System.Drawing;

namespace Onnx_Demo
{
    public partial class frmMain : Form
    {
        public frmMain()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";

        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;

        int inpWidth;
        int inpHeight;

        Mat image;

        string model_path = "";

        float[] factors = new float[2];

        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        Tensor<float> mask_tensor;
        List<NamedOnnxValue> input_ontainer;

        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;

        Tensor<float> result_tensors;

        int len_log_space = 50;
        float[] log_space;

        float[] mean = new float[] { 0.485f, 0.456f, 0.406f };
        float[] std = new float[] { 0.229f, 0.224f, 0.225f };

        Scalar[] lane_colors = new Scalar[] { new Scalar(68, 65, 249), new Scalar(44, 114, 243), new Scalar(30, 150, 248), new Scalar(74, 132, 249), new Scalar(79, 199, 249), new Scalar(109, 190, 144), new Scalar(142, 144, 77), new Scalar(161, 125, 39) };

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;

            pictureBox1.Image = null;
            pictureBox2.Image = null;
            textBox1.Text = "";

            image_path = ofd.FileName;
            pictureBox1.Image = new System.Drawing.Bitmap(image_path);
            image = new Mat(image_path);
        }

        private void Form1_Load(object sender, EventArgs e)
        {

            // 创建输入容器
            input_ontainer = new List<NamedOnnxValue>();

            // 创建输出会话
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行

            // 创建推理模型类,读取本地模型文件
            model_path = "model/lstr_360x640.onnx";

            inpWidth = 640;
            inpHeight = 360;

            onnx_session = new InferenceSession(model_path, options);

            // 创建输入容器
            input_ontainer = new List<NamedOnnxValue>();

            FileStream fileStream = new FileStream("model/log_space.bin", FileMode.Open);
            BinaryReader br = new BinaryReader(fileStream, Encoding.UTF8);

            log_space = new float[len_log_space];

            byte[] byteTemp;
            float fTemp;
            for (int i = 0; i < len_log_space; i++)
            {
                byteTemp = br.ReadBytes(4);
                fTemp = BitConverter.ToSingle(byteTemp, 0);
                log_space[i] = fTemp;
            }
            br.Close();

            image_path = "test_img/0.jpg";
            pictureBox1.Image = new Bitmap(image_path);

        }

        private unsafe void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }
            textBox1.Text = "检测中,请稍等......";
            pictureBox2.Image = null;
            System.Windows.Forms.Application.DoEvents();

            //图片缩放
            image = new Mat(image_path);

            int img_height = image.Rows;
            int img_width = image.Cols;

            Mat resize_image = new Mat();
            Cv2.Resize(image, resize_image, new OpenCvSharp.Size(inpWidth, inpHeight));

            int row = resize_image.Rows;
            int col = resize_image.Cols;

            float[] input_tensor_data = new float[1 * 3 * inpHeight * inpWidth];
            for (int c = 0; c < 3; c++)
            {
                for (int i = 0; i < row; i++)
                {
                    for (int j = 0; j < col; j++)
                    {
                        float pix = ((byte*)(resize_image.Ptr(i).ToPointer()))[j * 3 + c];
                        input_tensor_data[c * row * col + i * col + j] = (float)((pix / 255.0 - mean[c]) / std[c]);
                    }
                }
            }
            input_tensor = new DenseTensor<float>(input_tensor_data, new[] { 1, 3, inpHeight, inpWidth });

            float[] input_mask_data = new float[1 * 1 * inpHeight * inpWidth];
            for (int i = 0; i < input_mask_data.Length; i++)
            {
                input_mask_data[i] = 0.0f;
            }
            mask_tensor = new DenseTensor<float>(input_mask_data, new[] { 1, 1, inpHeight, inpWidth });

            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_ontainer.Add(NamedOnnxValue.CreateFromTensor("input_rgb", input_tensor));
            input_ontainer.Add(NamedOnnxValue.CreateFromTensor("input_mask", mask_tensor));

            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_ontainer);
            dt2 = DateTime.Now;

            //将输出结果转为DisposableNamedOnnxValue数组
            results_onnxvalue = result_infer.ToArray();

            float[] pred_logits = results_onnxvalue[0].AsTensor<float>().ToArray();
            float[] pred_curves = results_onnxvalue[1].AsTensor<float>().ToArray();

            int logits_h = results_onnxvalue[0].AsTensor<float>().Dimensions[1];
            int logits_w = results_onnxvalue[0].AsTensor<float>().Dimensions[2];
            int curves_w = results_onnxvalue[1].AsTensor<float>().Dimensions[2];

            List<int> good_detections = new List<int>();
            List<List<OpenCvSharp.Point>> lanes = new List<List<OpenCvSharp.Point>>();
            for (int i = 0; i < logits_h; i++)
            {
                float max_logits = -10000;
                int max_id = -1;
                for (int j = 0; j < logits_w; j++)
                {
                    float data = pred_logits[i * logits_w + j];
                    if (data > max_logits)
                    {
                        max_logits = data;
                        max_id = j;
                    }
                }
                if (max_id == 1)
                {
                    good_detections.Add(i);
                    int index = i * curves_w;
                    List<OpenCvSharp.Point> lane_points = new List<OpenCvSharp.Point>();
                    for (int k = 0; k < len_log_space; k++)
                    {
                        float y = pred_curves[0 + index] + log_space[k] * (pred_curves[1 + index] - pred_curves[0 + index]);
                        float x = (float)(pred_curves[2 + index] / Math.Pow(y - pred_curves[3 + index], 2.0) + pred_curves[4 + index] / (y - pred_curves[3 + index]) + pred_curves[5 + index] + pred_curves[6 + index] * y - pred_curves[7 + index]);
                        lane_points.Add(new OpenCvSharp.Point(x * img_width, y * img_height));
                    }
                    lanes.Add(lane_points);
                }
            }

            Mat result_image = image.Clone();

            //draw lines
            List<int> right_lane = new List<int>();
            List<int> left_lane = new List<int>();
            for (int i = 0; i < good_detections.Count; i++)
            {
                if (good_detections[i] == 0)
                {
                    right_lane.Add(i);
                }
                if (good_detections[i] == 5)
                {
                    left_lane.Add(i);
                }
            }

            if (right_lane.Count() == left_lane.Count())
            {
                Mat lane_segment_img = result_image.Clone();

                List<OpenCvSharp.Point> points = new List<OpenCvSharp.Point>();

                points.AddRange(lanes.First());

                points.Reverse();

                points.AddRange(lanes[left_lane[0]]);

                Cv2.FillConvexPoly(lane_segment_img, points, new Scalar(0, 191, 255));
                Cv2.AddWeighted(result_image, 0.7, lane_segment_img, 0.3, 0, result_image);
            }

            for (int i = 0; i < lanes.Count(); i++)
            {
                for (int j = 0; j < lanes[i].Count(); j++)
                {
                    Cv2.Circle(result_image, lanes[i][j], 3, lane_colors[good_detections[i]], -1);
                }
            }

            pictureBox2.Image = new System.Drawing.Bitmap(result_image.ToMemoryStream());
            textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
        }

        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }

        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }
    }
}

下载

源码下载

相关推荐
视觉语言导航29 分钟前
RAL-2025 | 清华大学数字孪生驱动的机器人视觉导航!VR-Robo:面向视觉机器人导航与运动的现实-模拟-现实框架
人工智能·深度学习·机器人·具身智能
**梯度已爆炸**39 分钟前
自然语言处理入门
人工智能·自然语言处理
ctrlworks1 小时前
楼宇自控核心功能:实时监控设备运行,快速诊断故障,赋能设备寿命延长
人工智能·ba系统厂商·楼宇自控系统厂家·ibms系统厂家·建筑管理系统厂家·能耗监测系统厂家
BFT白芙堂2 小时前
睿尔曼系列机器人——以创新驱动未来,重塑智能协作新生态(上)
人工智能·机器学习·机器人·协作机器人·复合机器人·睿尔曼机器人
aneasystone本尊2 小时前
使用 MCP 让 Claude Code 集成外部工具
人工智能
静心问道2 小时前
SEW:无监督预训练在语音识别中的性能-效率权衡
人工智能·语音识别
羊小猪~~2 小时前
【NLP入门系列五】中文文本分类案例
人工智能·深度学习·考研·机器学习·自然语言处理·分类·数据挖掘
xwz小王子2 小时前
从LLM到WM:大语言模型如何进化成具身世界模型?
人工智能·语言模型·自然语言处理
我爱一条柴ya2 小时前
【AI大模型】深入理解 Transformer 架构:自然语言处理的革命引擎
人工智能·ai·ai作画·ai编程·ai写作
静心问道2 小时前
FLAN-T5:规模化指令微调的语言模型
人工智能·语言模型·自然语言处理