【限时免费】20天拿下华为OD笔试之 【前缀和】2023B-最大子矩阵和【欧弟算法】全网注释最详细分类最全的华为OD真题题解

文章目录

题目描述与示例

题目描述

给定一个二维整数矩阵,要在这个矩阵中。选出一个子矩阵,使得这个子矩阵内所有的数字和尽量大

我们把这个子矩阵称为 "和最大子矩阵",子矩阵的选取原则,是原矩阵中一段相互连续的矩形区域

输入描述

输入的第一行包含两个整数N,M

(1 <= N, M <= 10)

表示一个 N 行 M 列的矩阵

下面有N行 每行有M个整数

同一行中每两个数字之间有一个空格

最后一个数字后面没有空格

所有的数字得在-1000 ~ 1000之间

输出描述

输出一行,一个数字。表示选出的"和最大子矩阵"内所有数字的和

示例

输入

Plain 复制代码
3 4
-3 5 -1 5
 2 4 -2 4
-1 3 -1 3

输出

Plain 复制代码
20

说明

一个3*4的矩阵中 后面3列的和为20,和最大

解题思路

如何表示一个子矩阵

一个子矩阵可以由四个参数决定,分别为上底、下底、左宽、右宽,分别用变量abcd表示的话,如下图中灰色区域为通过四个参数所确定的矩形。

如果我们想要枚举所有子矩阵,只需要分别枚举abcd,写一个4层嵌套的for循环即可。

python 复制代码
for a in range(n):
     for b in range(a, n):
         for c in range(m):
             for d in range(c, m):
                pass

暴力解法

暴力解法是很容易想到的,我们只需要枚举所有的子矩阵,然后对每一个子矩阵进行矩阵内所有元素求和即可。其核心代码为

python 复制代码
for a in range(n):
     for b in range(a, n):
         for c in range(m):
             for d in range(c, m):
                 submat_sum = 0
                 for i in range(a, b+1):
                     for j in range(c, d+1):
                         submat_sum += mat[i][j]
                 ans = max(submat_sum, ans)

注意到会出现6for循环嵌套,时间复杂度为 O ( n 3 m 3 ) O(n^3m^3) O(n3m3)。由于数据范围为(1 <= n, m <= 10),故取最大值时复杂度约为 O ( 1 0 6 ) O(10^6) O(106),无法通过全部用例,故应该思考如何优化。

二维前缀和优化

注意,该方法和LeetCode 304、二维区域和检索 - 矩阵不可变 是类似的。

注意到每一个子矩阵的计算都可以用以下方式进行拆解。

拆解后的四个区域具有一个共同的特点:它们的上底均为上边界、左宽均为左边界

因此需要考虑类似一维前缀和的方法,将所有的上底为上边界、左宽为左边界(即a = 0c = 0)的子矩阵的和提前记录在二维前缀和矩阵pre_sum_mat中。

pre_sum_mat是一个大小为(n+1)*(m+1)的矩阵,pre_sum_mat[i][j]表示以第0行、第0列为开头(取得到的开区间),第i行、第j列为结尾(取不到的闭区间)的子矩阵的和。

上述的四个区域的和,就可以分别使用pre_sum_mat[b+1][d+1]pre_sum_mat[b+1][c]pre_sum_mat[a][d+1]pre_sum_mat[a][c]来表示了。

这里对开/闭区间的理解是非常重要的,如果想不清楚的话,后面的代码很容易出错。如果把子矩阵用一种类似切片的方法表示(并不严谨的写法)为mat[a:b+1][c:d+1]。那么上述的分析过程可以写为

shell 复制代码
sum(mat[a:b+1][c:d+1])
= sum(mat[:b+1][:d+1]) + sum(mat[:a][:c]) - sum(mat[:b+1][:c]) - sum(mat[:a][:d+1])
= pre_sum_mat[b+1][d+1] + pre_sum_mat[a][c] - pre_sum_mat[b+1][c] - pre_sum_mat[a][d+1]

那么,在原矩阵mat中,分别以abcd为上底、下底、左宽、右宽的子矩阵的和,就可以记为

python 复制代码
submat_sum = (pre_sum_mat[b+1][d+1] + pre_sum_mat[a][c] -
              pre_sum_mat[b+1][c] - pre_sum_mat[a][d+1])

上述计算的时间复杂度为O(1),因此这种做法规避了暴力解对子矩阵求和时出现的反复计算,降低了最内层求和时时间复杂度。如果把外部的循环体加上,代码为

python 复制代码
for a in range(n):
    for b in range(a, n):
        for c in range(m):
            for d in range(c, m):
                submat_sum = pre_sum_mat[b+1][d+1] + pre_sum_mat[a][c] - \
                             pre_sum_mat[b+1][c] - pre_sum_mat[a][d+1]
                ans = max(submat_sum, ans)

如果不想让最内层的索引出现+1,则可以修改for循环的范围,代码变为

python 复制代码
for a in range(n):
    for b in range(a+1, n+1):
        for c in range(m):
            for d in range(c+1, m+1):
                submat_sum = pre_sum_mat[b][d] + pre_sum_mat[a][c] - \
                             pre_sum_mat[b][c] - pre_sum_mat[a][d]
                ans = max(submat_sum, ans)

上述过程的时间复杂度为 O ( n 2 m 2 ) O(n^2m^2) O(n2m2)。当nm取最大值时复杂度约为 O ( 1 0 4 ) O(10^4) O(104),可以通过全部用例。

二维前缀和矩阵的构建

二维前缀和矩阵pre_sum_mat的构建也要用到类似上述的拆分过程,其核心代码如下

python 复制代码
pre_sum_mat = [[0] * (m+1) for _ in range(n+1)]
for i in range(1, n+1):
    for j in range(1, m+1):
        pre_sum_mat[i][j] = pre_sum_mat[i-1][j] + pre_sum_mat[i][j-1] - \
                            pre_sum_mat[i-1][j-1] + mat[i-1][j-1]

要特别注意二维前缀和pre_sum_mat的大小,在两个维度上均比原矩阵矩阵mat1

该过程的时间复杂度为 O ( n m ) O(nm) O(nm)。

代码

解法一:二维前缀和

Python

python 复制代码
# 题目:2023B-最大子矩阵和
# 分值:200
# 作者:闭着眼睛学数理化
# 算法:二维前缀和
# 代码有看不懂的地方请直接在群上提问


from math import inf


n, m = map(int, input().split())
mat = list()
for _ in range(n):
    row = list(map(int, input().split()))
    mat.append(row)

# 构建二维前缀和数组
pre_sum_mat = [[0] * (m+1) for _ in range(n+1)]
for i in range(1, n+1):
    for j in range(1, m+1):
        pre_sum_mat[i][j] = pre_sum_mat[i-1][j] + pre_sum_mat[i][j-1] - \
                            pre_sum_mat[i-1][j-1] + mat[i-1][j-1]

# 初始化答案为负无穷小
ans = -inf

# 枚举上底a
for a in range(n):
    # 枚举下底b
    for b in range(a, n):
        # 枚举左宽c
        for c in range(m):
            # 枚举右宽d
            for d in range(c, m):
                # 此时四个参数能够表示一个子矩阵
                # 根据式子计算子矩阵和,更新ans
                submat_sum = pre_sum_mat[b+1][d+1] + pre_sum_mat[a][c] - \
                             pre_sum_mat[b+1][c] - pre_sum_mat[a][d+1]
                ans = max(submat_sum, ans)

print(ans)

Java

java 复制代码
import java.util.Scanner;

public class Main {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        int n = scanner.nextInt();
        int m = scanner.nextInt();
        int[][] mat = new int[n][m];

        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                mat[i][j] = scanner.nextInt();
            }
        }

        int[][] preSumMat = new int[n + 1][m + 1];

        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= m; j++) {
                preSumMat[i][j] = preSumMat[i - 1][j] + preSumMat[i][j - 1] - preSumMat[i - 1][j - 1] + mat[i - 1][j - 1];
            }
        }

        int ans = Integer.MIN_VALUE;

        for (int a = 0; a < n; a++) {
            for (int b = a; b < n; b++) {
                for (int c = 0; c < m; c++) {
                    for (int d = c; d < m; d++) {
                        int submatSum = preSumMat[b + 1][d + 1] + preSumMat[a][c] - preSumMat[b + 1][c] - preSumMat[a][d + 1];
                        ans = Math.max(submatSum, ans);
                    }
                }
            }
        }

        System.out.println(ans);
    }
}

C++

cpp 复制代码
#include <iostream>
#include <vector>
#include <limits>

using namespace std;

int main() {
    int n, m;
    cin >> n >> m;
    vector<vector<int>> mat(n, vector<int>(m));

    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            cin >> mat[i][j];
        }
    }

    vector<vector<int>> pre_sum_mat(n + 1, vector<int>(m + 1, 0));

    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= m; j++) {
            pre_sum_mat[i][j] = pre_sum_mat[i - 1][j] + pre_sum_mat[i][j - 1] - pre_sum_mat[i - 1][j - 1] + mat[i - 1][j - 1];
        }
    }

    int ans = numeric_limits<int>::min();

    for (int a = 0; a < n; a++) {
        for (int b = a; b < n; b++) {
            for (int c = 0; c < m; c++) {
                for (int d = c; d < m; d++) {
                    int submat_sum = pre_sum_mat[b + 1][d + 1] + pre_sum_mat[a][c] - pre_sum_mat[b + 1][c] - pre_sum_mat[a][d + 1];
                    ans = max(submat_sum, ans);
                }
            }
        }
    }

    cout << ans << endl;
    return 0;
}

时空复杂度

时间复杂度: O ( n 2 m 2 ) O(n^2m^2) O(n2m2)。

空间复杂度: O ( n m ) O(nm) O(nm)。二维前缀和矩阵所占空间。

解法二:暴力解法(不推荐)

Python

python 复制代码
# 题目:2023B-最大子矩阵和
# 分值:200
# 作者:闭着眼睛学数理化
# 算法:暴力解
# 代码有看不懂的地方请直接在群上提问


from math import inf


n, m = map(int, input().split())
mat = list()
for _ in range(n):
    row = list(map(int, input().split()))
    mat.append(row)


# 初始化答案为负无穷小
ans = -inf

for a in range(n):
     for b in range(a, n):
         for c in range(m):
             for d in range(c, m):
                 submat_sum = 0
                 for i in range(a, b+1):
                     for j in range(c, d+1):
                         submat_sum += mat[i][j]
                 ans = max(submat_sum, ans)

print(ans)

Java

java 复制代码
import java.util.Scanner;

public class Main {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        int n = scanner.nextInt();
        int m = scanner.nextInt();
        int[][] mat = new int[n][m];

        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                mat[i][j] = scanner.nextInt();
            }
        }

        int ans = Integer.MIN_VALUE;

        for (int a = 0; a < n; a++) {
            for (int b = a; b < n; b++) {
                for (int c = 0; c < m; c++) {
                    for (int d = c; d < m; d++) {
                        int submatSum = 0;
                        for (int i = a; i <= b; i++) {
                            for (int j = c; j <= d; j++) {
                                submatSum += mat[i][j];
                            }
                        }
                        ans = Math.max(submatSum, ans);
                    }
                }
            }
        }

        System.out.println(ans);
    }
}

C++

cpp 复制代码
#include <iostream>
#include <vector>
#include <climits>

using namespace std;

int main() {
    int n, m;
    cin >> n >> m;
    vector<vector<int>> mat(n, vector<int>(m));

    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
            cin >> mat[i][j];
        }
    }

    int ans = INT_MIN;

    for (int a = 0; a < n; a++) {
        for (int b = a; b < n; b++) {
            for (int c = 0; c < m; c++) {
                for (int d = c; d < m; d++) {
                    int submatSum = 0;
                    for (int i = a; i <= b; i++) {
                        for (int j = c; j <= d; j++) {
                            submatSum += mat[i][j];
                        }
                    }
                    ans = max(submatSum, ans);
                }
            }
        }
    }

    cout << ans << endl;

    return 0;
}

时空复杂度

时间复杂度: O ( n 3 m 3 ) O(n^3m^3) O(n3m3)。

空间复杂度: O ( 1 ) O(1) O(1)。


华为OD算法/大厂面试高频题算法练习冲刺训练

  • 华为OD算法/大厂面试高频题算法冲刺训练目前开始常态化报名!目前已服务100+同学成功上岸!

  • 课程讲师为全网50w+粉丝编程博主@吴师兄学算法 以及小红书头部编程博主@闭着眼睛学数理化

  • 每期人数维持在20人内,保证能够最大限度地满足到每一个同学的需求,达到和1v1同样的学习效果!

  • 60+天陪伴式学习,40+直播课时,300+动画图解视频,300+LeetCode经典题,200+华为OD真题/大厂真题,还有简历修改、模拟面试、专属HR对接将为你解锁

  • 可上全网独家的欧弟OJ系统练习华子OD、大厂真题

  • 可查看链接 大厂真题汇总 & OD真题汇总(持续更新)

  • 绿色聊天软件戳 od1336了解更多

相关推荐
yyt_cdeyyds3 分钟前
FIFO和LRU算法实现操作系统中主存管理
算法
alphaTao30 分钟前
LeetCode 每日一题 2024/11/18-2024/11/24
算法·leetcode
kitesxian39 分钟前
Leetcode448. 找到所有数组中消失的数字(HOT100)+Leetcode139. 单词拆分(HOT100)
数据结构·算法·leetcode
VertexGeek1 小时前
Rust学习(八):异常处理和宏编程:
学习·算法·rust
石小石Orz1 小时前
Three.js + AI:AI 算法生成 3D 萤火虫飞舞效果~
javascript·人工智能·算法
jiao_mrswang2 小时前
leetcode-18-四数之和
算法·leetcode·职场和发展
qystca2 小时前
洛谷 B3637 最长上升子序列 C语言 记忆化搜索->‘正序‘dp
c语言·开发语言·算法
薯条不要番茄酱2 小时前
数据结构-8.Java. 七大排序算法(中篇)
java·开发语言·数据结构·后端·算法·排序算法·intellij-idea
今天吃饺子2 小时前
2024年SCI一区最新改进优化算法——四参数自适应生长优化器,MATLAB代码免费获取...
开发语言·算法·matlab
是阿建吖!2 小时前
【优选算法】二分查找
c++·算法