线性回归 调试方法

调试方法

特征缩放

对于某些不具有比较性的样本特征 x i x_i xi (比如对其他的x来说 x i x_i xi 相当大或者相当小),梯度下降的过程可能会非常漫长,并且可能来回波动才能最后收敛到全局的最小值。

在这样的情况下,可以对 x i x_i xi 进行缩放(如 x i ≔ α x i x_i≔αx_i xi:=αxi 或者 x i = x i / α x_i=x_i/α xi=xi/α),使得 x i x_i xi 与其他的 x x x具有可比性,以增加梯度下降的效率。

**通常将 x x x缩放至⟦-1,1⟧**的区间内。(只表示一个大致的范围,这不是绝对的。)

均值归一

将 x i x_i xi 替换为 x i − μ i x_i−μ_i xi−μi 使得特征值具有为0的平均值(对 x 0 x_0 x0 不适用)
x i : = ( x i − μ i ) / s i x_i:=(x_i−μ_i)/s_i xi:=(xi−μi)/si

定义 μ i μ_i μi 为训练集 X X X 的平均值, s i = ∣ x i m a x − x i m i n ∣ s_i=|x_imax−x_imin | si=∣ximax−ximin∣, 表示 x i x_i xi 的取值范围(近似值),或者直接设置为 s i s_i si 的标准差。

学习率(Learning rate)

梯度下降调试的方法:

  1. 绘制 m i n J ( θ ) − b a t c h minJ(θ)-batch minJ(θ)−batch的图像

    原则:每一个batch之后 θ 的值都应该减小,这样的图像能够通过直观地表现变化率来表现梯度下降是否收敛(变化率为0)。

  2. 自动收敛测试

    如果 J ( θ ) J(θ) J(θ)在某一次迭代之后的下降值小于某个值 ε ε ε后,就能够判断算法已经达到了收敛。
    ε ε ε的值比较难取,所以通常采取1.中的方法进行观测。

常见的α过大的 m i n J ( θ ) − b a t c h minJ(θ)-batch minJ(θ)−batch的图像:

α过大,出现梯度爆炸,每次 J ( θ ) J(θ) J(θ)变化很大,导致代价函数无法收敛

α过小,梯度消失,每次 J ( θ ) J(θ) J(θ)变化很小,导致代价函数收敛速度过慢

相关推荐
写代码的小球1 小时前
求模运算符c
算法
巴伦是只猫5 小时前
【机器学习笔记Ⅰ】13 正则化代价函数
人工智能·笔记·机器学习
大千AI助手5 小时前
DTW模版匹配:弹性对齐的时间序列相似度度量算法
人工智能·算法·机器学习·数据挖掘·模版匹配·dtw模版匹配
LCG元5 小时前
自动驾驶感知模块的多模态数据融合:时序同步与空间对齐的框架解析
人工智能·机器学习·自动驾驶
YuTaoShao6 小时前
【LeetCode 热题 100】48. 旋转图像——转置+水平翻转
java·算法·leetcode·职场和发展
生态遥感监测笔记6 小时前
GEE利用已有土地利用数据选取样本点并进行分类
人工智能·算法·机器学习·分类·数据挖掘
Tony沈哲7 小时前
macOS 上为 Compose Desktop 构建跨架构图像处理 dylib:OpenCV + libraw + libheif 实践指南
opencv·算法
刘海东刘海东7 小时前
结构型智能科技的关键可行性——信息型智能向结构型智能的转变(修改提纲)
人工智能·算法·机器学习
pumpkin845148 小时前
Rust 调用 C 函数的 FFI
c语言·算法·rust