线性回归 调试方法

调试方法

特征缩放

对于某些不具有比较性的样本特征 x i x_i xi (比如对其他的x来说 x i x_i xi 相当大或者相当小),梯度下降的过程可能会非常漫长,并且可能来回波动才能最后收敛到全局的最小值。

在这样的情况下,可以对 x i x_i xi 进行缩放(如 x i ≔ α x i x_i≔αx_i xi:=αxi 或者 x i = x i / α x_i=x_i/α xi=xi/α),使得 x i x_i xi 与其他的 x x x具有可比性,以增加梯度下降的效率。

**通常将 x x x缩放至⟦-1,1⟧**的区间内。(只表示一个大致的范围,这不是绝对的。)

均值归一

将 x i x_i xi 替换为 x i − μ i x_i−μ_i xi−μi 使得特征值具有为0的平均值(对 x 0 x_0 x0 不适用)
x i : = ( x i − μ i ) / s i x_i:=(x_i−μ_i)/s_i xi:=(xi−μi)/si

定义 μ i μ_i μi 为训练集 X X X 的平均值, s i = ∣ x i m a x − x i m i n ∣ s_i=|x_imax−x_imin | si=∣ximax−ximin∣, 表示 x i x_i xi 的取值范围(近似值),或者直接设置为 s i s_i si 的标准差。

学习率(Learning rate)

梯度下降调试的方法:

  1. 绘制 m i n J ( θ ) − b a t c h minJ(θ)-batch minJ(θ)−batch的图像

    原则:每一个batch之后 θ 的值都应该减小,这样的图像能够通过直观地表现变化率来表现梯度下降是否收敛(变化率为0)。

  2. 自动收敛测试

    如果 J ( θ ) J(θ) J(θ)在某一次迭代之后的下降值小于某个值 ε ε ε后,就能够判断算法已经达到了收敛。
    ε ε ε的值比较难取,所以通常采取1.中的方法进行观测。

常见的α过大的 m i n J ( θ ) − b a t c h minJ(θ)-batch minJ(θ)−batch的图像:

α过大,出现梯度爆炸,每次 J ( θ ) J(θ) J(θ)变化很大,导致代价函数无法收敛

α过小,梯度消失,每次 J ( θ ) J(θ) J(θ)变化很小,导致代价函数收敛速度过慢

相关推荐
lifallen38 分钟前
Paimon 原子提交实现
java·大数据·数据结构·数据库·后端·算法
lixzest39 分钟前
C++ Lambda 表达式详解
服务器·开发语言·c++·算法
EndingCoder41 分钟前
搜索算法在前端的实践
前端·算法·性能优化·状态模式·搜索算法
丶小鱼丶1 小时前
链表算法之【合并两个有序链表】
java·算法·链表
不吃洋葱.1 小时前
前缀和|差分
数据结构·算法
2401_878624792 小时前
pytorch 自动微分
人工智能·pytorch·python·机器学习
胖达不服输2 小时前
「日拱一码」021 机器学习——特征工程
人工智能·python·机器学习·特征工程
小哥谈3 小时前
论文解析篇 | YOLOv12:以注意力机制为核心的实时目标检测算法
人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
蓝婷儿4 小时前
Python 机器学习核心入门与实战进阶 Day 4 - 支持向量机(SVM)原理与分类实战
python·机器学习·支持向量机
杰夫贾维斯4 小时前
CentOS Linux 8 的系统部署 Qwen2.5-7B -Instruct-AWQ
linux·运维·人工智能·机器学习·centos