二叉树详解(深度优先遍历、前序,中序,后序、广度优先遍历、二叉树所有节点的个数、叶节点的个数)

目录

一、树概念及结构(了解)

1.1树的概念

1.2树的表示

二、二叉树概念及结构

2.1概念

2.2现实中的二叉树:

2.3数据结构中的二叉树:

2.4特殊的二叉树:

[2.5 二叉树的存储结构](#2.5 二叉树的存储结构)

[2.51 顺序存储:](#2.51 顺序存储:)

[2.5.2 链式存储:](#2.5.2 链式存储:)

三、二叉树性质相关选择题练习

四、二叉树的实现

4.1头文件:

4.2Test.c

4.3前序,中序,后序(深度优先遍历)

4.4二叉树所有节点的个数

​编辑

4.5叶节点的个数

4.6层序遍历(广度优先遍历,使用队列)


一、树概念及结构(了解)

1.1树的概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它
叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。
有一个特殊的结点,称为根结点,根节点没有前驱结点除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、......、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继,因此,树是递归定义的。

  • 节点的度:一个节点含有的子树的个数称为该节点的度; 如下图:A的为6

  • 叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点

  • 非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点

  • 双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B 的父节点

  • 孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节 点

  • 兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点

  • 树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6

  • 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;

  • 树的高度或深度:树中节点的最大层次; 如上图:树的高度为4

关于树的高度,还有一种看法,就是把高度从0开始看,此时树的高度为3。

  • 节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先

  • 子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙

  • 森林:由m(m>0)棵互不相交的多颗树的集合称为森林;(数据结构中的学习并查集本质就是 一个森林)

1.2树的表示

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,实际中树有很多种表示方式,

如:双亲表示法,孩子表示法、孩子兄弟表示法等等。我们这里就简单的了解其中最常用的孩子

兄弟表示法。

typedef int DataType;

struct Node

{

struct Node* _firstChild1; // 第一个孩子结点

struct Node* _pNextBrother; // 指向其下一个兄弟结点

DataType _data; // 结点中的数据域

};

另一种方式:顺序表存孩子的指针(不推荐使用)

struct TreeNode

{

int data;

vector<struct TreeNode*> childs;

}

还有一种表示方式,双亲表示法:

双亲表示法采用顺序表(数组)存储普通树,其实现的核心思想是:顺序存储各个节点的同时,给各节点附加一个记录其父节点位置的变量

#define MAX_SIZE 100 // 宏定义树中结点的最大数量

typedef struct Snode{

char data;

int parent;

} PTNode;

typedef struct{

PTNode tnode[MAX_SIZE]; // 存放树中所有结点

int n; // 结点数

} PTree;

1.3树在实际中的运用(表示文件系统的目录树结构)

二、二叉树概念及结构

2.1概念

一棵二叉树是结点的一个有限集合,该集合或者为空,或者是由一个根节点加上两棵别称为左子

树和右子树的二叉树组成。

二叉树的特点:

  1. 每个结点最多有两棵子树,即二叉树不存在度大于2的结点。

  2. 二叉树的子树有左右之分,其子树的次序不能颠倒。

2.2现实中的二叉树:

2.3数据结构中的二叉树:

2.4特殊的二叉树:

  1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉

树。也就是说,如果一个二叉树的层数为K,且结点总数是(2^k) -1 ,则它就是满二叉树。

  1. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对

于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号

从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉

树。

2.5 二叉树的存储结构

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。
二叉树的性质

  1. 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2^(i-1) 个结点.
  2. 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2^h- 1.
  3. 对任何一棵二叉树, 如果度为0其叶结点个数为 n0, 度为2的分支结点个数为 n2,则有n0=n2
    +1
  4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h=logN + 1

2.51 顺序存储:

顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树

会有空间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我们后面的章节会专门讲

解。二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。

2.5.2 链式存储:

二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的

方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩

子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都

是二叉链,后面课程学到高阶数据结构如红黑树等会用到三叉链。

三、二叉树性质相关选择题练习

1.某完全二叉树按层次输出(同一层从左到右)的序列为 ABCDEFGH 。该完全二叉树的前序序列为(

A ABDHECFG

B ABCDEFGH

C HDBEAFCG

D HDEBFGCA

2.二叉树的先序遍历和中序遍历如下:先序遍历:EFHIGJK;中序遍历:HFIEJKG.则二叉树根结点为

()

A E

B F

C G

D H

3.设一课二叉树的中序遍历序列:badce,后序遍历序列:bdeca,则二叉树前序遍历序列为____。

A adbce

B decab

C debac

D abcde

  1. 某二叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为( )

A 不存在这样的二叉树

B 200

C 198

D 199

2.在具有 2n 个结点的完全二叉树中,叶子结点个数为( )

A n

B n+1

C n-1

D n/2

3.一棵完全二叉树的节点数位为531个,那么这棵树的高度为( )

A 11

B 10

C 8

D 12

四、二叉树的实现

4.1头文件:

#pragma once
#include <stdio.h>
#include <stdbool.h>
#include <assert.h>
#include <stdlib.h>



typedef int BTDataType;

typedef struct BinaryTreeNode
{
	struct BinaryTreeNode* left;
	struct BinaryTreeNode* right;
	BTDataType data;
}BTNode;

4.2Test.c

int main()
{
	BTNode* A = (BTNode*)malloc(sizeof(BTNode));
	A->data = 'A';
	A->left = NULL;
	A->right = NULL;

	BTNode* B = (BTNode*)malloc(sizeof(BTNode));
	B->data = 'B';
	B->left = NULL;
	B->right = NULL;

	BTNode* C = (BTNode*)malloc(sizeof(BTNode));
	C->data = 'C';
	C->left = NULL;
	C->right = NULL;

	BTNode* D = (BTNode*)malloc(sizeof(BTNode));
	D->data = 'D';
	D->left = NULL;
	D->right = NULL;

	BTNode* E = (BTNode*)malloc(sizeof(BTNode));
	E->data = 'E';
	E->left = NULL;
	E->right = NULL;

	A->left = B;
	A->right = C;
	B->left = D;
	B->right = E;

	return 0;
}

4.3前序,中序,后序(深度优先遍历)

void PrevOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("NULL ");
		return;
	}
	printf("%c ", root->data);
	PrevOrder(root->left);
	PrevOrder(root->right);
}

void InOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("NULL ");
		return;
	}
	InOrder(root->left);
	printf("%c ", root->data);
	InOrder(root->right);
}


void PostOrder(BTNode* root)
{
	if (root == NULL)
	{
		printf("NULL ");
		return;
	}
	PostOrder(root->left);
	PostOrder(root->right);

	printf("%c ", root->data);
	
}

4.4二叉树所有节点的个数

//方法一:定义全局变量(不推荐)
int size = 0;
void TreeSize(BTNode* root)
{
	if (root == NULL)
	{
		return;
	}
	else {
		++size;
	}

	TreeSize(root->left);
	TreeSize(root->right);
	return size;
}

方法二:传址调用

int TreeSize(BTNode* root,int* psize)
{
    if (root == NULL)
    {
        return;
    }
    else {
        ++(*psize);
    }

    TreeSize(root->left, psize);
    TreeSize(root->right, psize);
    return psize;
}

方法三:递归、分治思想:

否则,返回左子树节点数 + 右子树节点数 + 1(当前节点)

int TreeSize(BTNode* root)
{
    // 如果树为空(即根节点为NULL),则返回0  
    // 否则,返回左子树节点数 + 右子树节点数 + 1(当前节点)
    return root == NULL ? 0 : TreeSize(root->left) + TreeSize(root->right) + 1;
}

4.5叶节点的个数

int LeafSize(BTNode* root)
{
	if (root == NULL)
		return 0;

	if (root->left == NULL && root->right == NULL)
		return 1;

	return TreeSize(root->left) + TreeSize(root->right);

}

4.6层序遍历(广度优先遍历,使用队列)

void LevelOrder(BTNode* root)
{
	Queue q;
	QueueInit(&q);
	if (root)
	{
		QueuePush(&q, root);
	}
	while (!QueueEmpty(&q))
	{
		BTNode* front = QueueFront(&q);
		QueuePop(&q);
		printf("%c ", front->data);

		if (front->left)
		{
			QueuePush(&q, front->left);
		}
		if (front->right)
		{
			QueuePush(&q, front->right);
		}
	}

	QueueDestory(&q);
}

新年第一篇!!!

祝大家新年快乐

看到这里了还不给博主扣个:

⛳️ 点赞☀️收藏 ⭐️ 关注!

你们的点赞就是博主更新最大的动力!

有问题可以评论或者私信呢秒回哦。

相关推荐
源码哥_博纳软云21 分钟前
JAVA同城服务场馆门店预约系统支持H5小程序APP源码
java·开发语言·微信小程序·小程序·微信公众平台
学会沉淀。28 分钟前
Docker学习
java·开发语言·学习
Rinai_R43 分钟前
计算机组成原理的学习笔记(7)-- 存储器·其二 容量扩展/多模块存储系统/外存/Cache/虚拟存储器
笔记·物联网·学习
吃着火锅x唱着歌43 分钟前
PHP7内核剖析 学习笔记 第四章 内存管理(1)
android·笔记·学习
ragnwang1 小时前
C++ Eigen常见的高级用法 [学习笔记]
c++·笔记·学习
西猫雷婶1 小时前
python学opencv|读取图像(二十一)使用cv2.circle()绘制圆形进阶
开发语言·python·opencv
kiiila1 小时前
【Qt】对象树(生命周期管理)和字符集(cout打印乱码问题)
开发语言·qt
yuanManGan1 小时前
数据结构漫游记:静态链表的实现(CPP)
数据结构·链表
罗伯特祥1 小时前
C调用gnuplot绘图的方法
c语言·plot
小_太_阳1 小时前
Scala_【2】变量和数据类型
开发语言·后端·scala·intellij-idea