目标检测难题 | 小目标检测策略汇总

大家好,在计算机视觉中,检测小目标是最有挑战的问题之一,本文给出了一些有效的策略。

从无人机上看到的小目标

为了提高模型在小目标上的性能,本文推荐以下技术:

  • 提高图像采集的分辨率

  • 增加模型的输入分辨率

  • tile你的图像

  • 通过增强生成更多数据

  • 自动学习模型anchors

  • 过滤掉无关的类别

小目标问题困扰着世界各地的目标检测模型。查一下最近的模型在COCO上的评估结果,YOLOv3,EfficientDet和YOLOv4:

查看AP_S、AP_M、AP_L以了解最新的模型

以Efficient为例,小目标的AP只有12%,大目标的AP为51%。这几乎是五倍的差异,检测小物体如此困难要归结于模型,目标检测模型通过在卷积层中对像素进行聚合来形成特征。

物体检测中的特征聚合

在网络的末端,基于损失函数进行预测,损失函数根据预测值和ground truth之间的差异对所有像素进行加和。

YOLO中的损失函数

如果ground truth框不大,则在进行训练时信号会很小。此外,小物体最有可能有数据标记错误,他们的识别可能被忽略,从经验和理论上讲小物体是很难的。

提升图像采集的分辨率

这其实都是分辨率的问题。

非常小的物体的边界框中可能只包含几个像素,这意味着增加图像的分辨率可以增加探测器可以从那个小盒子中形成的丰富特征,这是非常重要的。

因此,我们建议尽可能提高采集图像的分辨率。

提高模型的输入分辨率

一旦有了更高分辨率的图像,就可以放大模型的输入分辨率。警告:这将导致大型模型需要更长的时间来训练,并且开始部署时,也会更慢地进行推断,可能需要实验来找出速度与性能之间的正确权衡。

在训练YOLOv4中,可以通过改变配置文件中的图像大小来轻松缩放输入分辨率。

python 复制代码
[net] 
batch=64 
subdivisions=36 
width={YOUR RESOLUTION WIDTH HERE} 
height={YOUR RESOLUTION HEIGHT HERE} 
channels=3 
momentum=0.949 
decay=0.0005 
angle=0 
saturation = 1.5 
exposure = 1.5 
hue = .1  
learning_rate=0.001 
burn_in=1000 
max_batches=6000 
policy=steps 
steps=4800.0,5400.0 
scales=.1,.1

同时也可以在训练YOLOv5中通过改变训练命令中的图像尺寸参数来轻松缩放输入分辨率:

python 复制代码
!python train.py --img {YOUR RESOLUTON SIZE HERE} --batch 16 --epochs 10 --data '../data.yaml' --cfg ./models/custom_yolov5s.yaml --weights '' --name yolov5s_results  --cache

对图像进行Tiling

检测小物体的另一个重要策略是将图像切割后形成batch,这个操作叫做tile,作为预处理步骤。tile可以有效地将检测器聚焦在小物体上,但允许保持所需的小输入分辨率,以便能够运行快速推断。

tile图像作为预处理步骤

如果在训练中使用tile,重要的是要记住,也需要在推理时tile你的图像。

通过增强生成更多数据

数据增强从基本数据集生成新的图像,这对于防止模型过拟合训练集非常有用。

一些特别有用的小物体检测增强包括随机裁剪、随机旋转和马赛克增强。

自动学习模型Anchors

Anchors是模型学会预测的与之相关的原型边界框。也就是说,anchors可以预先设置,有时对你的训练数据不是最优的。最好根据手头的任务自定义调优它们,YOLOv5模型会根据自定义数据自动为你完成这项工作,所需要做的就是开始训练。

python 复制代码
Analyzing anchors... anchors/target = 4.66, Best Possible Recall (BPR) = 0.9675. Attempting to generate improved anchors, please wait... WARNING: Extremely small objects found. 35 of 1664 labels are < 3 pixels in width or height. Running kmeans for 9 anchors on 1664 points... thr=0.25: 0.9477 best possible recall, 4.95 anchors past thr n=9, img_size=416, metric_all=0.317/0.665-mean/best, past_thr=0.465-mean: 18,24,  65,37,  35,68,  46,135,  152,54,  99,109,  66,218,  220,128,  169,228 Evolving anchors with Genetic Algorithm: fitness = 0.6825: 100%|██████████| 1000/1000 [00:00<00:00, 1081.71it/s] thr=0.25: 0.9627 best possible recall, 5.32 anchors past thr n=9, img_size=416, metric_all=0.338/0.688-mean/best, past_thr=0.476-mean: 13,20,  41,32,  26,55,  46,72,  122,57,  86,102,  58,152,  161,120,  165,204

过滤掉无关的类别

类别管理是提高数据集质量的一项重要技术。如果有一个类与另一个类明显重叠,应该从数据集中过滤掉这个类。也许在处理中,认为数据集中的小物体不值得检测,可能希望将其拿掉。

综上所述,正确地检测小物体确实是一项挑战。本文讨论了一些策略来改善小物体探测器,即:

  • 提高图像采集的分辨率

  • 增加模型的输入分辨率

  • tile你的图像

  • 通过增强生成更多数据

  • 自动学习模型anchors

  • 过滤掉无关的类别

相关推荐
如若1232 小时前
主要用于图像的颜色提取、替换以及区域修改
人工智能·opencv·计算机视觉
Evand J3 小时前
集合卡尔曼滤波(Ensemble Kalman Filter),用于二维滤波(模拟平面上的目标跟踪),MATLAB代码
matlab·平面·目标跟踪
加密新世界4 小时前
优化 Solana 程序
人工智能·算法·计算机视觉
WeeJot嵌入式7 小时前
OpenCV:计算机视觉的瑞士军刀
计算机视觉
思通数科多模态大模型7 小时前
10大核心应用场景,解锁AI检测系统的智能安全之道
人工智能·深度学习·安全·目标检测·计算机视觉·自然语言处理·数据挖掘
学不会lostfound8 小时前
三、计算机视觉_05MTCNN人脸检测
pytorch·深度学习·计算机视觉·mtcnn·p-net·r-net·o-net
sp_fyf_20248 小时前
【大语言模型】ACL2024论文-18 MINPROMPT:基于图的最小提示数据增强用于少样本问答
人工智能·深度学习·神经网络·目标检测·机器学习·语言模型·自然语言处理
Mr.谢尔比9 小时前
李宏毅机器学习课程知识点摘要(1-5集)
人工智能·pytorch·深度学习·神经网络·算法·机器学习·计算机视觉
思通数科AI全行业智能NLP系统9 小时前
六大核心应用场景,解锁AI检测系统的智能安全之道
图像处理·人工智能·深度学习·安全·目标检测·计算机视觉·知识图谱
非自律懒癌患者10 小时前
Transformer中的Self-Attention机制如何自然地适应于目标检测任务
人工智能·算法·目标检测