预测模型:MATLAB线性回归

1. 线性回归模型的基本原理

线性回归是统计学中用来预测连续变量之间关系的一种方法。它假设变量之间存在线性关系,可以通过一个或多个自变量(预测变量)来预测因变量(响应变量)的值。基本的线性回归模型可以表示为:
y = β 0 + β 1 x 1 + β 2 x 2 + . . . + β n x n + ϵ y = \beta_0 + \beta_1x_1 + \beta_2x_2 + ... + \beta_nx_n + \epsilon y=β0+β1x1+β2x2+...+βnxn+ϵ

其中, y y y是因变量, x 1 , x 2 , . . . , x n x_1, x_2, ..., x_n x1,x2,...,xn是自变量, β 0 \beta_0 β0是截距项, β 1 , β 2 , . . . , β n \beta_1, \beta_2, ..., \beta_n β1,β2,...,βn是回归系数, ϵ \epsilon ϵ是误差项。

2. MATLAB中线性回归的求解

MATLAB提供了多种工具和函数来进行线性回归分析,包括fitlm函数用于创建线性回归模型,以及regress函数等。fitlm提供了一个方便的接口来拟合线性模型,自动计算回归系数,并提供了估计的统计信息。

3. 实例分析

假设我们有一组数据,包含了一家公司的广告支出和相应的销售额。我们想要建立一个模型,预测根据广告支出预测销售额。

数据:

广告支出(万) 销售额(万)
1.2 58
2.1 75
0.9 49
1.8 72
1.5 65
2.5 90

使用MATLAB进行线性回归分析:

matlab 复制代码
clc,clear
% 加载数据
X = [1.2, 2.1, 0.9, 1.8, 1.5 , 2.5]; % 广告支出
Y = [58, 75, 49, 72, 65, 90]; % 销售额

% 线性回归分析
mdl = fitlm(X, Y);

disp(mdl)

% 绘制数据点
figure; % 创建一个新的图形窗口
scatter(X, Y, 'filled'); % 绘制散点图
hold on; % 保持图形,以便在同一图形上添加回归线

% 计算回归线
b = mdl.Coefficients.Estimate; % 获取回归系数
refX = min(X):0.01:max(X); % 生成一个参考X值的向量,用于绘制回归线
refY = b(1) + b(2)*refX; % 计算对应的Y值

% 绘制回归线
plot(refX, refY, 'r', 'LineWidth', 2); % 绘制红色的回归线

% 标题和轴标签
title('广告支出与销售额的线性回归分析');
xlabel('广告支出(万)');
ylabel('销售额(万)');

% 显示图例
legend('观测数据', '回归线', 'Location', 'best');

hold off; % 释放图形

4. 求解结果

在代码中,fitlm函数会输出一个线性模型对象,其中包含了模型的详细统计信息,如回归系数的估计值、 R 2 R^2 R2值(解释变量对响应变量的解释程度)、p值等,可以用来评估模型的质量和预测能力。

具体结果如下:

线性回归图如下:

通过线性回归模型,我们可以预测在不同的广告支出下可能获得的销售额,这对于资源分配和营销策略的制定极为重要。线性回归模型是最简单的预测模型之一,后面还会介绍其他的回归预测模型。

相关推荐
浊酒南街3 小时前
XGBClassifiler函数介绍
算法·机器学习·xgb
mlxg999993 小时前
hom_mat2d_to_affine_par 的c#实现
算法·计算机视觉·c#
张琪杭7 小时前
机器学习-随机森林解析
人工智能·随机森林·机器学习
真就死难7 小时前
完全日期(日期枚举问题)--- 数学性质题型
算法·日期枚举
不知道取啥耶8 小时前
C++ 滑动窗口
数据结构·c++·算法·leetcode
花间流风8 小时前
晏殊几何学讲义
算法·矩阵·几何学·情感分析
@心都8 小时前
机器学习数学基础:42.AMOS 结构方程模型(SEM)分析的系统流程
人工智能·算法·机器学习
北顾南栀倾寒11 小时前
[算法笔记]cin和getline的并用、如何区分两个数据对、C++中std::tuple类
笔记·算法
幻风_huanfeng11 小时前
每天五分钟深度学习框架PyTorch:使用残差块快速搭建ResNet网络
人工智能·pytorch·深度学习·神经网络·机器学习·resnet