DoRA: Weight-Decomposed Low-Rank Adaptation

摘要 (Abstract):

DoRA 是一种新的参数高效微调(PEFT)方法,它通过将预训练权重分解为幅度(magnitude)和方向(direction)两个组成部分来进行微调。这种方法特别利用了LoRA来进行方向更新,以有效减少可训练参数的数量。DoRA 的目标是模仿全微调(FT)的学习能力,同时避免额外的推理开销。实验结果表明,DoRA 在多个下游任务上,如常识推理、视觉指令调整和图像/视频文本理解,始终优于LoRA。

核心方法 (Core Method):

DoRA 方法的核心在于将预训练的权重矩阵分解为幅度向量(m)和方向矩阵(V),然后对这两个部分进行微调。具体来说,DoRA 使用LoRA 对方向矩阵 V 进行更新,同时允许幅度向量 m 单独训练。这种分解策略简化了LoRA的任务,使其专注于方向适应,同时保持了幅度的可调性。DoRA 的公式可以表示为 W' = m (V + ΔV)/norm = m (W + BA)/norm,其中 ΔV 是通过两个低秩矩阵 B 和 A 学习得到的增量方向更新。

实验结果 (Experimental Results):

DoRA 在多个下游任务上对LLaMA、LLaVA和VL-BART进行微调,实验结果显示DoRA在不牺牲推理效率的情况下,始终优于LoRA。例如,在常识推理任务上,DoRA 在LLaMA-7B/13B上的表现比LoRA提高了3.4/+1.0,在视觉指令调整任务上,DoRA 在LLaVA-7B上提高了0.6,在图像/视频文本理解任务上,DoRA 在VL-BART上提高了0.9/+1.9。

结论 (Conclusion):

DoRA 提供了一种新的PEFT方法,它通过权重分解来实现与FT相似的学习容量,同时保持了与LoRA相同的推理效率。DoRA 在多个任务和模型上的表现优于LoRA,证明了其在参数高效微调方面的潜力。

参考链接 (Reference Link):

相关推荐
idealmu2 小时前
知识蒸馏(KD)详解一:认识一下BERT 模型
人工智能·深度学习·bert
Cathyqiii2 小时前
生成对抗网络(GAN)
人工智能·深度学习·计算机视觉
ai产品老杨3 小时前
打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程的智慧工业开源了
人工智能·开源·音视频·能源
小陈phd4 小时前
高级RAG策略学习(五)——llama_index实现上下文窗口增强检索RAG
人工智能
凯禾瑞华养老实训室5 小时前
人才教育导向下:老年生活照护实训室助力提升学生老年照护服务能力
人工智能
luckys.one5 小时前
第9篇:Freqtrade量化交易之config.json 基础入门与初始化
javascript·数据库·python·mysql·算法·json·区块链
湫兮之风6 小时前
Opencv: cv::LUT()深入解析图像块快速查表变换
人工智能·opencv·计算机视觉
~|Bernard|7 小时前
在 PyCharm 里怎么“点鼠标”完成指令同样的运行操作
算法·conda
战术摸鱼大师7 小时前
电机控制(四)-级联PID控制器与参数整定(MATLAB&Simulink)
算法·matlab·运动控制·电机控制
Christo37 小时前
TFS-2018《On the convergence of the sparse possibilistic c-means algorithm》
人工智能·算法·机器学习·数据挖掘