大语言模型LangChain + ChatGLM3-6B的组合集成:工具调用+提示词解读

文章目录

  • [大语言模型LangChain + ChatGLM3-6B的组合集成:工具调用+提示词解读](#大语言模型LangChain + ChatGLM3-6B的组合集成:工具调用+提示词解读)
    • 官方给出的提示词模板
    • 解读
      • 注解:
        • [1. 模板描述](#1. 模板描述)
        • [2. 工具调用规范](#2. 工具调用规范)
        • [3. 问题处理流程](#3. 问题处理流程)
        • [4. 最终响应](#4. 最终响应)
        • [5. 历史记录](#5. 历史记录)
        • [6. 实际应用举例](#6. 实际应用举例)

大语言模型LangChain + ChatGLM3-6B的组合集成:工具调用+提示词解读

官方给出的提示词模板

PROMPT_TEMPLATES["agent_chat"] = {

"ChatGLM3":

"""

You can answer using the tools, or answer directly using your knowledge without using the tools.Respond to the human as helpfully and accurately as possible.

You have access to the following tools:

{tools}

Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).

Valid "action" values: "Final Answer" or [{tool_names}]

Provide only ONE action per $JSON_BLOB, as shown:

复制代码
{{{{
  "action": $TOOL_NAME,
  "action_input": $INPUT
}}}}

Follow this format:

Question: input question to answer

Thought: consider previous and subsequent steps

Action:

复制代码
$JSON_BLOB

Observation: action result

... (repeat Thought/Action/Observation N times)

Thought: I know what to respond

Action:

复制代码
{{{{
  "action": "Final Answer",
  "action_input": "Final response to human"
}}}}
Begin! Reminder to ALWAYS respond with a valid json blob of a single action. Use tools if necessary. Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation:.

history: {history}

Question: {input}

Thought: {agent_scratchpad}

""",

}

解读

这段代码片段定义了一个名为PROMPT_TEMPLATES["agent_chat"]的大语言模型(如ChatGLM3)的提示词模板,用于指导模型在与人类交互时如何使用工具以及基于自身知识进行回答。该模板用于确保模型遵循预设的格式和逻辑流程来处理问题,并在需要时调用指定的外部工具。

注解:

1. 模板描述
  • 模型被告知可以利用工具来获取信息并整合到答案中,也可以直接利用自身的知识库提供答案。
  • 提供了访问一系列工具的权限,这些工具的具体名称由变量 {tools} 代替,在实际使用时会填充具体的工具列表。
2. 工具调用规范
  • 要调用工具,模型需要生成一个JSON blob对象,其中包含两个键值对:

    • "action": 工具名称,可选值为"Final Answer"或预先定义好的具体工具名。
    • "action_input": 传递给工具的输入参数。
  • JSON blob结构示例:

    复制代码
    {{"{
      "action": "$TOOL_NAME",
      "action_input": "$INPUT"
    }}} 
3. 问题处理流程
  • 对于每个问题,模型应该按照以下步骤执行:
    • Question: 显示待解答的问题文本。
    • Thought: 模型记录其思考过程和之前的推理步骤。
    • Action: 发布一个包含工具调用指令或最终回答的JSON blob。
    • Observation: 如果执行了工具调用,则显示工具返回的结果。
    • 这个流程可以重复多次,直至模型得出最终答案。
4. 最终响应
  • 当模型准备好给出最终答案时,它将输出一个JSON blob,其中动作类型是"Final Answer",并将最终回复作为"action_input"的值。
5. 历史记录
  • history: {history} 表示对话的历史上下文,将在实际应用中填充已发生的对话内容以帮助模型理解当前情境。
6. 实际应用举例
  • 在实际运行时,{input}{agent_scratchpad}{history} 都会被替换为真实值。
  • Question: {input} 会插入当前用户提出的问题。
  • Thought: {agent_scratchpad} 会显示模型内部关于当前问题的思考过程或临时结论。

通过这种结构化的提示方式,ChatGLM3模型能够根据问题内容选择是否及如何调用外部工具,并最终组织出合适且准确的回答。

相关推荐
阿坡RPA9 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
用户277844910499310 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
机器之心10 小时前
刚刚,DeepSeek公布推理时Scaling新论文,R2要来了?
人工智能
算AI12 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
凯子坚持 c13 小时前
基于飞桨框架3.0本地DeepSeek-R1蒸馏版部署实战
人工智能·paddlepaddle
你觉得20513 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
8K超高清13 小时前
中国8K摄像机:科技赋能文化传承新图景
大数据·人工智能·科技·物联网·智能硬件
hyshhhh14 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
薛定谔的猫-菜鸟程序员14 小时前
零基础玩转深度神经网络大模型:从Hello World到AI炼金术-详解版(含:Conda 全面使用指南)
人工智能·神经网络·dnn
币之互联万物14 小时前
2025 AI智能数字农业研讨会在苏州启幕,科技助农与数据兴业成焦点
人工智能·科技