力扣--动态规划516.最长回文子序列

思路分析:

  1. 创建一个二维动态规划表dp,其中dp[i][j]表示在子串s[i...j]中的最长回文子序列的长度。
  2. 初始化基本情况:对角线上的元素dp[i][i]都为1,因为单个字符本身就是长度为1的回文子序列。
  3. 从字符串末尾向前遍历,填充动态规划表。对于每一对(i, j),如果s[i]等于s[j],则当前子串的最长回文子序列长度为dp[i + 1][j - 1] + 2,否则取dp[i + 1][j]dp[i][j - 1]中的较大值。
  4. 最终结果存储在dp[0][s.size() - 1]中,表示整个字符串s的最长回文子序列的长度。
cpp 复制代码
class Solution {
public:
    // 计算最长回文子序列的长度
    int longestPalindromeSubseq(string s) {
        // 创建二维动态规划表,dp[i][j]表示子串s[i...j]的最长回文子序列长度
        vector<vector<int>> dp(s.size(), vector<int>(s.size(), 0));

        // 初始化基本情况:单个字符本身就是长度为1的回文子序列
        for (int i = 0; i < s.size(); i++) {
            dp[i][i] = 1;
        }

        // 自底向上填充动态规划表
        // 从字符串末尾向前遍历
        for (int i = s.size() - 1; i >= 0; i--) {
            for (int j = i + 1; j < s.size(); j++) {
                // 如果s[i]等于s[j],当前子串的最长回文子序列长度为dp[i + 1][j - 1] + 2
                if (s[i] == s[j]) {
                    dp[i][j] = dp[i + 1][j - 1] + 2;
                } else {
                    // 否则,取dp[i + 1][j]和dp[i][j - 1]中的较大值
                    dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
                }
            }
        }

        // 最终结果存储在dp[0][s.size() - 1]中,表示整个字符串s的最长回文子序列长度
        return dp[0][s.size() - 1];
    }
};
相关推荐
英英_29 分钟前
MATLAB数值计算基础教程
数据结构·算法·matlab
一起养小猫43 分钟前
LeetCode100天Day14-轮转数组与买卖股票最佳时机
算法·leetcode·职场和发展
至为芯1 小时前
IP6537至为芯支持双C口快充输出的45W降压SOC芯片
c语言·开发语言
hele_two1 小时前
快速幂算法
c++·python·算法
OopspoO1 小时前
C++杂记——Name Mangling
c++
yuanmenghao1 小时前
车载Linux 系统问题定位方法论与实战系列 - 车载 Linux 平台问题定位规范
linux·运维·服务器·网络·c++
小羊羊Python2 小时前
SoundMaze v1.0.1正式发布!
开发语言·c++
l1t2 小时前
利用DeepSeek将python DLX求解数独程序格式化并改成3.x版本
开发语言·python·算法·数独
jllllyuz2 小时前
基于子集模拟的系统与静态可靠性分析及Matlab优化算法实现
算法·matlab·概率论
程序员-King.2 小时前
day143—递归—对称二叉树(LeetCode-101)
数据结构·算法·leetcode·二叉树·递归