算法沉淀 —— 动态规划(子序列问题(上))

算法沉淀 ------ 动态规划(子序列问题(上))

前言

几乎所有的动态规划问题大致可分为以下5个步骤,后续所有问题分析都将基于此

  • 1.、状态表示:通常状态表示分为以下两种,其中更是第一种为主。

    • 以i为结尾,dp[i] 表示什么,通常为代求问题(具体依题目而定)
    • 以i为开始,dp[i]表示什么,通常为代求问题(具体依题目而定)
  • 2、状态转移方程

    • 以上述的dp[i]意义为根据, 通过最近一步来分析和划分问题,由此来得到一个有关dp[i]的状态转移方程。
  • 3、dp表创建,初始化

    • 动态规划问题中,如果直接使用状态转移方程通常会伴随着越界访问等风险,所以一般需要初始化。而初始化最重要的两个注意事项便是:保证后续结果正确,不受初始值影响;下标的映射关系
    • 初始化一般分为以下两种:
      • 直接初始化开头的几个值。
      • 一维空间大小+1,下标从1开始;二维增加一行/一列
  • 4、填dp表、填表顺序:根据状态转移方程来确定填表顺序。

  • 5、确定返回值

一、最长递增子序列

【题目链接】:300. 最长递增子序列

【题目】:

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组[0,3,1,6,2,2,7] 的子序列。

【示例】:

输入:nums = [10,9,2,5,3,7,101,18]

输出:4

解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

【分析】:

我们可以定义dp[i]表示以i位置为结尾的最长递增子序列。由于每一个数字均可单独构成一个递增子序列,所以我们在创建dp表时,可以将dp表中的值全部初始化为1.

状态转移方程推导:

如果dp[i]所表示的递增子序列大于1,此时在i之前一定存在某些元素和nums[i]构成递增子序列。而这些元素我们可以用dp[j[表示(0 <= j <i),并且nums[j] < nums[i]。

但j到底在什么位置呢?我们无从而知,需要依次遍历i前的数据。来查找符合要求的最大dp[j]。所以状态转移方程为:

bash 复制代码
for(int j = i - 1; j >= 0; j--)
{
     if(nums[i] > nums[j])
         dp[i] = max(dp[i], dp[j] + 1);
 }

【其他】:

最后只需将dp[i]的最终值累加即可!!

【代码编写】:

cpp 复制代码
class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        int n = nums.size();
        int ret = 1;
        vector<int> dp(n, 1);
        for(int i = 1; i < n; i++)
        {
            for(int j = i - 1; j >= 0; j--)
            {
                if(nums[i] > nums[j])
                    dp[i] = max(dp[i], dp[j] + 1);
            }
            ret = max(dp[i], ret);
        }
        return ret;
    }
};

二、摆动序列

【题目链接】:376. 摆动序列

【题目】:

如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。

例如, [1, 7, 4, 9, 2, 5] 是一个 摆动序列 ,因为差值 (6, -3, 5, -7, 3) 是正负交替出现的。相反,[1, 4, 7, 2, 5] 和 [1, 7, 4, 5, 5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。

子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。

给你一个整数数组 nums ,返回 nums 中作为 摆动序列 的 最长子序列的长度 。

【分析】:

我们可以定义dp[i]表示以i位置为结尾的最大摆动序列。但我们发现i位置的状态还可以细分为上升和下降。所以我们重新定义:

  1. f[i]表示以i位置为结尾,且最后呈 "上升" 趋势的最大摆动序列。
  2. g[i]表示以i位置为结尾,且最后呈 "趋势" 的最大摆动序列。

状态转移方程推导:

  1. f[i]:最大摆动序列的长度可能为1,也可能大于1。对于大于1的情况,由于f[i]表示最后位置是呈上升趋势的摆动序列,所以nums[i] > nums[i - 1]。此时在i-1位置一定是呈下降的,即g[i-1]。所以状态转移方程如下:
  1. 对于g[i]来说,同理可得状态转移方程如下:

细节处理:

不管是f表还是g表,以i位置为结尾的摆动序列的最小长度一定为1,即nums[i]本身。所以我们可以直接将f表和g表中的数据的初始值设为1。后续填表过程中,仅需考虑长度大于1的情况即可!!

【代码编写】:

cpp 复制代码
class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) {
        int n = nums.size(), ret = 1;
        vector<int> f(n, 1), g(n, 1);
        for(int i = 1; i < n ; i++)
        {
            for(int j = i - 1; j >= 0; j--)
            {
                if(nums[i] > nums[j])
                    f[i] = max(g[j] + 1, f[i]);
                else if(nums[i] < nums[j])
                    g[i] = max(f[j] + 1, g[i]);
            }
            ret = max(ret, max(f[i], g[i]));
        }
        return ret;
    }
};

三、 最长递增子序列的个数

【题目链接】:673. 最长递增子序列的个数

【题目】:

给定一个未排序的整数数组 nums , 返回最长递增子序列的个数 。

注意 这个数列必须是 严格 递增的。

【示例】:

输入: [1,3,5,4,7]

输出: 2

解释: 有两个最长递增子序列,分别是 [1, 3, 4, 7] 和[1, 3, 5, 7]。

【分析】:

我们先定义dp[i]表示以i位置为结尾的最长递增子序列的个数。但我们发现dp[i]表示两个状态:最长递增、个数。所以我们需要将dp[i]状态细分:

  1. 我们定义len[i]表示以i位置为结尾的最长递增子序列的长度。
  2. 定义count[i]表示以i位置为结尾的最长递增子序列的个数。

显然len[i]、count[i]最小为1,即nums[i]本身单独构成一个递增子序列。所以我们在创建len表和count表时,我们可以将初始值设为1。

如果最大递增子序列长度大于1时,这也意味着在i前就已经存在一个递增子序列(设该子序列以j下标为结尾)。并且满足nums[i] > nums[j],此时该递增子序列(以j下标结尾,0 <= j < i)和nums[i]构成了一个新的递增子序列。

如果最长递增子序列大于1,此时最终结果不仅要保证nums[i] > nums[j],还需保证以j位置结尾的子序列最大(即len[j]在0 ~ i-1中最大)。所以我们需要依次遍历0 ~ i-1之间len表中的左右值!!

那count[i]的值如何更新呢?

我们可以在求len[i]的过程中,更新count[i]的值。具体如下:

  • 如果len[i] + 1 == len[j],此时count[i] += count[j]
  • 如果len[i] + 1 > len[j],此时len[i]和count[i]的需要重新更新。即len[i] = len[j] + 1, count[i] = count[j]
  • 如果len[i] + 1 < len[j],此时count[j]是无效次数。我们直接忽略这种情况。

细节处理:

通过上述过程我们可以的以i位置为结尾的最大递增序列和次数。所以最终整个数组中,构成的最大递增序列的次数求解可以采用和上述类型的思想。(具体查看代码)

【代码编写】:

cpp 复制代码
class Solution {
public:
    int findNumberOfLIS(vector<int>& nums) {
        int n = nums.size();
        vector<int> len(n, 1), count(n, 1);
        int maxlen = 1, maxcount = 1;
        for(int i = 1; i < n; i++)
        {
            for(int j = i - 1; j >= 0; j--)
            {
                if(nums[i] > nums[j])
                {
                    if(len[j] + 1 == len[i])
                        count[i] += count[j];
                    else if(len[j] + 1 > len[i])
                        len[i] = len[j] + 1, count[i] = count[j];
                }
            }
            if(len[i] == maxlen)
                maxcount += count[i];
            else if(len[i] >maxlen)
                maxlen = len[i], maxcount = count[i]; 
        }
        return maxcount;
    }
};

四、最长数对链

【题目链接】:646. 最长数对链

【题目】:

给你一个由 n 个数对组成的数对数组 pairs ,其中 pairs[i] = [lefti, righti] 且 lefti < righti 。

现在,我们定义一种 跟随 关系,当且仅当 b < c 时,数对 p2 = [c, d] 才可以跟在 p1 = [a, b] 后面。我们用这种形式来构造 数对链 。

找出并返回能够形成的 最长数对链的长度 。你不需要用到所有的数对,你可以以任何顺序选择其中的一些数对来构造。

【分析】:

由于题目中明确表示可以任意选择数组中的数来构造数对链。所以我们可以先对数组进行排序。此时我们可以定义dp[i[表示以i位置为结尾的最长数对链。

状态转移方程推导分析:

显然dp[i]的最小值为1,即[pair[i][0], pair[i][1]]本身构成数对链。

如果以i位置为结尾的数对链的长度大于1,此时i位置之前一定存在数对链(下标设为j,0 <= j <i)和当前元素构成一个数对链。该情况的出现需满足pairs[i][0] > pairs[j][1]。但我们最终的结果是要得到dp[j]中的最大值。我们可以直接从后往前遍历,只要查找到第一个满足条件的dp[j]即可。(原因在于我们已经对原数组进行排序)

所以状态转移方程为:

cpp 复制代码
 for(int j = i -1; j >= 0; j--)
 {
      if(pairs[i][0] > pairs[j][1])
      {
          dp[i] = max(dp[i], dp[j] + 1);
          break;
      }
  }

【代码编写】:

cpp 复制代码
class Solution {
public:
    int findLongestChain(vector<vector<int>>& pairs) {
        sort(pairs.begin(), pairs.end());
        int n = pairs.size(), ret = 1;
        vector<int> dp(n, 1);
        for(int i = 1; i < n; i++)
        {
            for(int j = i -1; j >= 0; j--)
            {
                if(pairs[i][0] > pairs[j][1])
                {
                    dp[i] = max(dp[i], dp[j] + 1);
                    break;
                }
            }
            ret = max(ret, dp[i]);
        }
        return ret;
    }
};
相关推荐
XH华3 小时前
初识C语言之二维数组(下)
c语言·算法
南宫生4 小时前
力扣-图论-17【算法学习day.67】
java·学习·算法·leetcode·图论
不想当程序猿_4 小时前
【蓝桥杯每日一题】求和——前缀和
算法·前缀和·蓝桥杯
落魄君子4 小时前
GA-BP分类-遗传算法(Genetic Algorithm)和反向传播算法(Backpropagation)
算法·分类·数据挖掘
菜鸡中的奋斗鸡→挣扎鸡4 小时前
滑动窗口 + 算法复习
数据结构·算法
Lenyiin4 小时前
第146场双周赛:统计符合条件长度为3的子数组数目、统计异或值为给定值的路径数目、判断网格图能否被切割成块、唯一中间众数子序列 Ⅰ
c++·算法·leetcode·周赛·lenyiin
郭wes代码4 小时前
Cmd命令大全(万字详细版)
python·算法·小程序
scan7245 小时前
LILAC采样算法
人工智能·算法·机器学习
菌菌的快乐生活5 小时前
理解支持向量机
算法·机器学习·支持向量机
大山同学5 小时前
第三章线性判别函数(二)
线性代数·算法·机器学习