[Algorithm][回溯][组合][目标和][组合总和]详细讲解

目录


1.组合

1.题目链接


2.算法原理详解

  • 思路:每次都只选一个数,此后只能选它后面的数
  • 函数设计
    • 全局变量
      • vector<vector<int>> ret
      • vector<int> path
    • DFS()设计:void DFS(nums, pos)
    • 递归出口path.size() == k
    • 剪枝 :控制参数,每次从此位置下一个位置开始递归

3.代码实现

cpp 复制代码
class Solution 
{
    int _n;
    int _k;

    vector<vector<int>> ret;
    vector<int> path;
public:
    vector<vector<int>> combine(int n, int k) 
    {
        _n = n;
        _k = k;
        DFS(1);
        return ret;
    }

    void DFS(int start)
    {
        if(path.size() == _k)
        {
            ret.push_back(path);
        }

        // 递归 + 剪枝
        for(int i = start; i <= _n; i++)
        {
            path.push_back(i);
            DFS(i + 1);
            path.pop_back(); // 回溯,恢复现场
        }
    }
};

2.目标和

1.题目链接


2.算法原理详解

  • 本题与子集逻辑几乎相同
  • 本题会实现两种代码,可以通过这两种代码来感受:回溯的两种做法
    • path是全局变量的时候
      • 本题可能会超时
    • path作为参数
      • 此时编译器/代码会代为回溯,每次回溯都省去了一次加/减运算,故效率有所提高

3.代码实现

cpp 复制代码
// v1.0 效率低,可能会超时
class Solution 
{
    int ret = 0;
    int path = 0;
    int _target = 0;
public:
    int findTargetSumWays(vector<int>& nums, int target) 
    {
        _target = target;
        DFS(nums, 0);
        return ret;
    }

    void DFS(vector<int>& nums, int pos)
    {
        if(pos == nums.size())
        {
            if(path == _target)
            {
                ret++;
            }

            return;
        }

        // 加
        path += nums[pos];
        DFS(nums, pos + 1);
        path -= nums[pos]; // 回溯,恢复现场

        // 减
        path -= nums[pos];
        DFS(nums, pos + 1);
        path += nums[pos]; // 回溯,恢复现场
    }
};
--------------------------------------------------------------------------
// v2.0,效率有所改善
class Solution 
{
    int ret = 0;
    int _target = 0;
public:
    int findTargetSumWays(vector<int>& nums, int target) 
    {
        _target = target;
        DFS(nums, 0, 0);
        return ret;
    }

    void DFS(vector<int>& nums, int pos, int path)
    {
        if(pos == nums.size())
        {
            if(path == _target)
            {
                ret++;
            }

            return;
        }

        // 加
        DFS(nums, pos + 1, path + nums[pos]);

        // 减
        DFS(nums, pos + 1, path - nums[pos]);
    }
};

3.组合总和

1.题目链接


2.算法原理详解

  • 思路一:每次都只选一个数,此后只能选它及它后面的数

    • 函数设计
      • 全局变量
        • vector<vector<int>> ret
        • vector<int> path
      • DFS()设计:void DFS(nums, pos, sum)
      • 递归出口sum == _target || (sum > _target || pos == nums.size())
      • 回溯 :通过sum控制回溯
      • 剪枝 :控制pos参数,每次从此位置开始递归
  • 思路二:每次枚举一个数,出现几次

    • 函数设计
      • 全局变量
        • vector<vector<int>> ret
        • vector<int> path
      • DFS()设计:void DFS(nums, pos, sum)
      • 递归出口sum == _target || (sum > _target || pos == nums.size())
      • 回溯 :通过sum控制回溯
      • 剪枝 :控制pos参数,每次从此位置开始递归

3.代码实现

cpp 复制代码
// v1.0 每次都只选一个数,此后只能选它及它后面的数
class Solution 
{
    int _target;
    vector<int> path;
    vector<vector<int>> ret;
public:
    vector<vector<int>> combinationSum(vector<int>& nums, int target) 
    {
        _target = target;
        DFS(nums, 0, 0);
        return ret;
    }
    
    void DFS(vector<int>& nums, int pos, int sum)
    {
        if(sum == _target)
        {
            ret.push_back(path);
            return;
        }
        
        if(sum > _target || pos == nums.size())
        {
            return;
        }
        
        // 递归决策 + 剪枝
        for(int i = pos; i < nums.size(); i++)
        {
            path.push_back(nums[i]);
            DFS(nums, i, sum + nums[i]);
            path.pop_back(); // 回溯,恢复现场
        }
    }
};
--------------------------------------------------------------------------
// v2.0 每次枚举一个数,出现几次
class Solution 
{
    int _target;
    vector<int> path;
    vector<vector<int>> ret;
public:
    vector<vector<int>> combinationSum(vector<int>& nums, int target) 
    {
        _target = target;
        DFS(nums, 0, 0);
        return ret;
    }
    
    void DFS(vector<int>& nums, int pos, int sum)
    {
        if(sum == _target)
        {
            ret.push_back(path);
            return;
        }
        
        if(sum > _target || pos == nums.size())
        {
            return;
        }
        
        // 枚举个数 + 剪枝
        for(int i = 0; i * nums[pos] + sum <= _target; i++)
        {
            if(i)
            {
                path.push_back(nums[pos]);    
            }
            
            DFS(nums, pos + 1, i * nums[pos] + sum);
        }
        
        // 回溯,恢复现场
        for(int i = 1; i * nums[pos] + sum <= _target; i++)
        {
            path.pop_back();
        }
    }
};
相关推荐
爱思德学术17 分钟前
中国计算机学会(CCF)推荐学术会议-B(交叉/综合/新兴):BIBM 2025
算法
冰糖猕猴桃28 分钟前
【Python】进阶 - 数据结构与算法
开发语言·数据结构·python·算法·时间复杂度、空间复杂度·树、二叉树·堆、图
lifallen41 分钟前
Paimon vs. HBase:全链路开销对比
java·大数据·数据结构·数据库·算法·flink·hbase
liujing102329292 小时前
Day04_刷题niuke20250703
java·开发语言·算法
2401_881244402 小时前
Treap树
数据结构·算法
乌萨奇也要立志学C++2 小时前
二叉树OJ题(单值树、相同树、找子树、构建和遍历)
数据结构·算法
网安INF2 小时前
深度学习中的逻辑回归:从原理到Python实现
人工智能·python·深度学习·算法·逻辑回归
wsxqaz2 小时前
浏览器原生控件上传PDF导致hash值不同
算法·pdf·哈希算法
NAGNIP3 小时前
Transformer注意力机制——MHA&MQA&GQA
人工智能·算法
摘星编程3 小时前
多模态AI Agent技术栈解析:视觉-语言-决策融合的算法原理与实践
人工智能·算法·多模态ai·视觉语言融合·ai决策算法