LLM大语言模型(十六):最新开源 GLM4-9B 本地部署,带不动,根本带不动

目录

前言

本机环境

GLM4代码库下载

模型文件下载:文件很大

修改为从本地模型文件启动

启动模型cli对话demo

慢,巨慢,一个字一个字的蹦

GPU资源使用情况

GLM3资源使用情况对比


前言

GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源版本。

在语义、数学、推理、代码和知识等多方面的数据集测评中, GLM-4-9B 及其人类偏好对齐的版本 GLM-4-9B-Chat 均表现出超越 Llama-3-8B 的卓越性能。

除了能进行多轮对话,GLM-4-9B-Chat 还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理(支持最大 128K 上下文)等高级功能。

本代模型增加了多语言支持,支持包括日语,韩语,德语在内的 26 种语言。

我们还推出了支持 1M 上下文长度(约 200 万中文字符)的 GLM-4-9B-Chat-1M 模型和基于 GLM-4-9B 的多模态模型 GLM-4V-9B。GLM-4V-9B 具备 1120 * 1120 高分辨率下的中英双语多轮对话能力,在中英文综合能力、感知推理、文字识别、图表理解等多方面多模态评测中,GLM-4V-9B 表现出超越 GPT-4-turbo-2024-04-09、Gemini 1.0 Pro、Qwen-VL-Max 和 Claude 3 Opus 的卓越性能。

本机环境

OS:Windows

CPU:AMD Ryzen 5 3600X 6-Core Processor

Mem:32GB

GPU:RTX 4060Ti 16G

GLM4代码库下载

参考:LLM大语言模型(一):ChatGLM3-6B本地部署_llm3 部署-CSDN博客

bash 复制代码
# 下载代码库
https://github.com/THUDM/GLM-4.git

模型文件下载:文件很大

建议从modelscope下载模型,这样就不用担心网络问题了。

模型链接如下:

glm-4-9b-chat汇聚各领域最先进的机器学习模型,提供模型探索体验、推理、训练、部署和应用的一站式服务。https://modelscope.cn/models/ZhipuAI/glm-4-9b-chat/files

bash 复制代码
git lfs install # 以安装则忽略
git clone https://www.modelscope.cn/ZhipuAI/glm-4-9b-chat.git

做好心理准备:接近20G(我的带宽只有300Mbps~~)

修改为从本地模型文件启动

修改此文件basic_demo/trans_cli_demo.py

修改这一行:

MODEL_PATH = os.environ.get('MODEL_PATH', 'D:\github\glm-4-9b-chat') 该为你下载的模型文件夹

python 复制代码
"""
This script creates a CLI demo with transformers backend for the glm-4-9b model,
allowing users to interact with the model through a command-line interface.

Usage:
- Run the script to start the CLI demo.
- Interact with the model by typing questions and receiving responses.

Note: The script includes a modification to handle markdown to plain text conversion,
ensuring that the CLI interface displays formatted text correctly.
"""

import os
import torch
from threading import Thread
from typing import Union
from pathlib import Path
from peft import AutoPeftModelForCausalLM, PeftModelForCausalLM
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    PreTrainedModel,
    PreTrainedTokenizer,
    PreTrainedTokenizerFast,
    StoppingCriteria,
    StoppingCriteriaList,
    TextIteratorStreamer
)

ModelType = Union[PreTrainedModel, PeftModelForCausalLM]
TokenizerType = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]

# 改为你下载的模型文件夹
MODEL_PATH = os.environ.get('MODEL_PATH', 'D:\github\glm-4-9b-chat')


def load_model_and_tokenizer(
        model_dir: Union[str, Path], trust_remote_code: bool = True
) -> tuple[ModelType, TokenizerType]:
    model_dir = Path(model_dir).expanduser().resolve()
    if (model_dir / 'adapter_config.json').exists():
        model = AutoPeftModelForCausalLM.from_pretrained(
            model_dir, trust_remote_code=trust_remote_code, device_map='auto')
        tokenizer_dir = model.peft_config['default'].base_model_name_or_path
    else:
        model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=trust_remote_code, device_map='auto')
        tokenizer_dir = model_dir

    tokenizer = AutoTokenizer.from_pretrained(
        tokenizer_dir, trust_remote_code=trust_remote_code, encode_special_tokens=True, use_fast=False
    )
    return model, tokenizer


model, tokenizer = load_model_and_tokenizer(MODEL_PATH, trust_remote_code=True)


class StopOnTokens(StoppingCriteria):
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        stop_ids = model.config.eos_token_id
        for stop_id in stop_ids:
            if input_ids[0][-1] == stop_id:
                return True
        return False


if __name__ == "__main__":
    history = []
    max_length = 8192
    top_p = 0.8
    temperature = 0.6
    stop = StopOnTokens()

    print("Welcome to the GLM-4-9B CLI chat. Type your messages below.")
    while True:
        user_input = input("\nYou: ")
        if user_input.lower() in ["exit", "quit"]:
            break
        history.append([user_input, ""])

        messages = []
        for idx, (user_msg, model_msg) in enumerate(history):
            if idx == len(history) - 1 and not model_msg:
                messages.append({"role": "user", "content": user_msg})
                break
            if user_msg:
                messages.append({"role": "user", "content": user_msg})
            if model_msg:
                messages.append({"role": "assistant", "content": model_msg})
        model_inputs = tokenizer.apply_chat_template(
            messages,
            add_generation_prompt=True,
            tokenize=True,
            return_tensors="pt"
        ).to(model.device)
        streamer = TextIteratorStreamer(
            tokenizer=tokenizer,
            timeout=60,
            skip_prompt=True,
            skip_special_tokens=True
        )
        generate_kwargs = {
            "input_ids": model_inputs,
            "streamer": streamer,
            "max_new_tokens": max_length,
            "do_sample": True,
            "top_p": top_p,
            "temperature": temperature,
            "stopping_criteria": StoppingCriteriaList([stop]),
            "repetition_penalty": 1.2,
            "eos_token_id": model.config.eos_token_id,
        }
        t = Thread(target=model.generate, kwargs=generate_kwargs)
        t.start()
        print("GLM-4:", end="", flush=True)
        for new_token in streamer:
            if new_token:
                print(new_token, end="", flush=True)
                history[-1][1] += new_token

        history[-1][1] = history[-1][1].strip()

启动模型cli对话demo

运行该py文件即可,效果如下:

模型运行时会报个warning:

C:\Users\Administrator\.cache\huggingface\modules\transformers_modules\glm-4-9b-chat\modeling_chatglm.pm.py:189: UserWarning: 1Torch was not compiled with flash attention. (Triggered internally at C:\cb\pytorc000h_1000000000000\work\aten\src\ATen\native\transformers\cuda\sdp_utils.cpp:263.)

context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,

不过也没影响运行。

慢,巨慢,一个字一个字的蹦

GPU资源使用情况

  • 16G显存,使用率90%+
  • 内存使用16G,50%

GLM3资源使用情况对比

相关推荐
生医转码,四海为家2 分钟前
零基础-动手学深度学习-6.6 卷积神经网络(LeNet)
人工智能·深度学习·cnn
无名工程师7 分钟前
AI 学习过程中各阶段的学习重点、时间规划以及不同方向的选择与建议等内容
人工智能·学习
java1234_小锋10 分钟前
【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts) 视频教程 - 微博文章数据可视化分析-文章分类下拉框实现
python·自然语言处理·flask
WXX_s29 分钟前
【OpenCV篇】OpenCV——03day.图像预处理(2)
人工智能·python·opencv·学习·计算机视觉
有才不一定有德1 小时前
深入剖析 MetaGPT 中的提示词工程:WriteCode 动作的提示词设计
人工智能·aigc·提示词工程
花月mmc1 小时前
CanMV-K230 AI学习笔记系列
人工智能·笔记·学习
s1ckrain2 小时前
【论文阅读】ON THE ROLE OF ATTENTION HEADS IN LARGE LANGUAGE MODEL SAFETY
论文阅读·人工智能·语言模型·大模型安全
Jackilina_Stone2 小时前
【论文|复现】YOLOFuse:面向多模态目标检测的双流融合框架
人工智能·python·目标检测·计算机视觉·融合
Java中文社群2 小时前
Coze开源版?别吹了!
人工智能·后端·开源