LLM大语言模型(十六):最新开源 GLM4-9B 本地部署,带不动,根本带不动

目录

前言

本机环境

GLM4代码库下载

模型文件下载:文件很大

修改为从本地模型文件启动

启动模型cli对话demo

慢,巨慢,一个字一个字的蹦

GPU资源使用情况

GLM3资源使用情况对比


前言

GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源版本。

在语义、数学、推理、代码和知识等多方面的数据集测评中, GLM-4-9B 及其人类偏好对齐的版本 GLM-4-9B-Chat 均表现出超越 Llama-3-8B 的卓越性能。

除了能进行多轮对话,GLM-4-9B-Chat 还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理(支持最大 128K 上下文)等高级功能。

本代模型增加了多语言支持,支持包括日语,韩语,德语在内的 26 种语言。

我们还推出了支持 1M 上下文长度(约 200 万中文字符)的 GLM-4-9B-Chat-1M 模型和基于 GLM-4-9B 的多模态模型 GLM-4V-9B。GLM-4V-9B 具备 1120 * 1120 高分辨率下的中英双语多轮对话能力,在中英文综合能力、感知推理、文字识别、图表理解等多方面多模态评测中,GLM-4V-9B 表现出超越 GPT-4-turbo-2024-04-09、Gemini 1.0 Pro、Qwen-VL-Max 和 Claude 3 Opus 的卓越性能。

本机环境

OS:Windows

CPU:AMD Ryzen 5 3600X 6-Core Processor

Mem:32GB

GPU:RTX 4060Ti 16G

GLM4代码库下载

参考:LLM大语言模型(一):ChatGLM3-6B本地部署_llm3 部署-CSDN博客

bash 复制代码
# 下载代码库
https://github.com/THUDM/GLM-4.git

模型文件下载:文件很大

建议从modelscope下载模型,这样就不用担心网络问题了。

模型链接如下:

glm-4-9b-chat汇聚各领域最先进的机器学习模型,提供模型探索体验、推理、训练、部署和应用的一站式服务。https://modelscope.cn/models/ZhipuAI/glm-4-9b-chat/files

bash 复制代码
git lfs install # 以安装则忽略
git clone https://www.modelscope.cn/ZhipuAI/glm-4-9b-chat.git

做好心理准备:接近20G(我的带宽只有300Mbps~~)

修改为从本地模型文件启动

修改此文件basic_demo/trans_cli_demo.py

修改这一行:

MODEL_PATH = os.environ.get('MODEL_PATH', 'D:\github\glm-4-9b-chat') 该为你下载的模型文件夹

python 复制代码
"""
This script creates a CLI demo with transformers backend for the glm-4-9b model,
allowing users to interact with the model through a command-line interface.

Usage:
- Run the script to start the CLI demo.
- Interact with the model by typing questions and receiving responses.

Note: The script includes a modification to handle markdown to plain text conversion,
ensuring that the CLI interface displays formatted text correctly.
"""

import os
import torch
from threading import Thread
from typing import Union
from pathlib import Path
from peft import AutoPeftModelForCausalLM, PeftModelForCausalLM
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    PreTrainedModel,
    PreTrainedTokenizer,
    PreTrainedTokenizerFast,
    StoppingCriteria,
    StoppingCriteriaList,
    TextIteratorStreamer
)

ModelType = Union[PreTrainedModel, PeftModelForCausalLM]
TokenizerType = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]

# 改为你下载的模型文件夹
MODEL_PATH = os.environ.get('MODEL_PATH', 'D:\github\glm-4-9b-chat')


def load_model_and_tokenizer(
        model_dir: Union[str, Path], trust_remote_code: bool = True
) -> tuple[ModelType, TokenizerType]:
    model_dir = Path(model_dir).expanduser().resolve()
    if (model_dir / 'adapter_config.json').exists():
        model = AutoPeftModelForCausalLM.from_pretrained(
            model_dir, trust_remote_code=trust_remote_code, device_map='auto')
        tokenizer_dir = model.peft_config['default'].base_model_name_or_path
    else:
        model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=trust_remote_code, device_map='auto')
        tokenizer_dir = model_dir

    tokenizer = AutoTokenizer.from_pretrained(
        tokenizer_dir, trust_remote_code=trust_remote_code, encode_special_tokens=True, use_fast=False
    )
    return model, tokenizer


model, tokenizer = load_model_and_tokenizer(MODEL_PATH, trust_remote_code=True)


class StopOnTokens(StoppingCriteria):
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        stop_ids = model.config.eos_token_id
        for stop_id in stop_ids:
            if input_ids[0][-1] == stop_id:
                return True
        return False


if __name__ == "__main__":
    history = []
    max_length = 8192
    top_p = 0.8
    temperature = 0.6
    stop = StopOnTokens()

    print("Welcome to the GLM-4-9B CLI chat. Type your messages below.")
    while True:
        user_input = input("\nYou: ")
        if user_input.lower() in ["exit", "quit"]:
            break
        history.append([user_input, ""])

        messages = []
        for idx, (user_msg, model_msg) in enumerate(history):
            if idx == len(history) - 1 and not model_msg:
                messages.append({"role": "user", "content": user_msg})
                break
            if user_msg:
                messages.append({"role": "user", "content": user_msg})
            if model_msg:
                messages.append({"role": "assistant", "content": model_msg})
        model_inputs = tokenizer.apply_chat_template(
            messages,
            add_generation_prompt=True,
            tokenize=True,
            return_tensors="pt"
        ).to(model.device)
        streamer = TextIteratorStreamer(
            tokenizer=tokenizer,
            timeout=60,
            skip_prompt=True,
            skip_special_tokens=True
        )
        generate_kwargs = {
            "input_ids": model_inputs,
            "streamer": streamer,
            "max_new_tokens": max_length,
            "do_sample": True,
            "top_p": top_p,
            "temperature": temperature,
            "stopping_criteria": StoppingCriteriaList([stop]),
            "repetition_penalty": 1.2,
            "eos_token_id": model.config.eos_token_id,
        }
        t = Thread(target=model.generate, kwargs=generate_kwargs)
        t.start()
        print("GLM-4:", end="", flush=True)
        for new_token in streamer:
            if new_token:
                print(new_token, end="", flush=True)
                history[-1][1] += new_token

        history[-1][1] = history[-1][1].strip()

启动模型cli对话demo

运行该py文件即可,效果如下:

模型运行时会报个warning:

C:\Users\Administrator\.cache\huggingface\modules\transformers_modules\glm-4-9b-chat\modeling_chatglm.pm.py:189: UserWarning: 1Torch was not compiled with flash attention. (Triggered internally at C:\cb\pytorc000h_1000000000000\work\aten\src\ATen\native\transformers\cuda\sdp_utils.cpp:263.)

context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,

不过也没影响运行。

慢,巨慢,一个字一个字的蹦

GPU资源使用情况

  • 16G显存,使用率90%+
  • 内存使用16G,50%

GLM3资源使用情况对比

相关推荐
用户5191495848456 分钟前
探秘C#伪随机数生成器的安全漏洞与破解之道
人工智能·aigc
小糖学代码12 分钟前
LLM系列:1.python入门:2.数值型对象
人工智能·python·ai
gs8014023 分钟前
Ascend 服务器是什么?(Ascend Server / 昇腾服务器)
运维·服务器·人工智能
鱼鱼块26 分钟前
"从自然语言到数据库:AI First 时代的编程与开发革命"
sqlite·llm·openai
csdn_aspnet30 分钟前
AI赋能各类主流编程语言
人工智能·ai·软件开发
CodeNerd影40 分钟前
RAG文件检索增强(基于吴恩达课程)
人工智能
阿里云大数据AI技术1 小时前
一行代码,让Elasticsearch 集群瞬间雪崩——5000W 数据压测下的性能避坑全攻略
人工智能
Slaughter信仰1 小时前
图解大模型_生成式AI原理与实战学习笔记(前三章综合问答)
人工智能·笔记·学习
霍格沃兹测试学院-小舟畅学1 小时前
告别误判:基于n8n构建你的AI输出安全测试护盾
人工智能
阿乔外贸日记1 小时前
中国汽车零配件出口企业情况
大数据·人工智能·智能手机·云计算·汽车