采用自动微分进行模型的训练

自动微分训练模型

简单代码实现:

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim

# 定义一个简单的线性回归模型
class LinearRegression(nn.Module):
    def __init__(self):
        super(LinearRegression, self).__init__()
        self.linear = nn.Linear(1, 1)  # 输入维度是1,输出维度也是1

    def forward(self, x):
        return self.linear(x)

# 准备训练数据
x_train = torch.tensor([[1.0], [2.0], [3.0]])
y_train = torch.tensor([[2.0], [4.0], [6.0]])

# 实例化模型、损失函数和优化器
model = LinearRegression()
criterion = nn.MSELoss()  # 均方误差损失函数
optimizer = optim.SGD(model.parameters(), lr=0.01)  # 随机梯度下降优化器

# 训练模型
epochs = 1000
for epoch in range(epochs):
    # 前向传播
    outputs = model(x_train)
    loss = criterion(outputs, y_train)

    # 反向传播
    optimizer.zero_grad()  # 清空之前的梯度
    loss.backward()  # 自动计算梯度
    optimizer.step()  # 更新模型参数

    if (epoch+1) % 100 == 0:
        print(f'Epoch [{epoch+1}/{epochs}], Loss: {loss.item():.4f}')

# 测试模型
x_test = torch.tensor([[4.0]])
predicted = model(x_test)
print(f'预测值: {predicted.item():.4f}')

代码分解:

1.定义一个简单的线性回归模型:

  • LinearRegression 类继承自nn.Module,这是所有神经网络模型的基类。

  • __init__ 方法中,定义了一个线性层 self.linear,它的输入维度是1,输出维度也是1。

  • forward 方法定义了数据在模型中的传播路径,即输入 x 经过 self.linear 层后得到输出。

    python 复制代码
    class LinearRegression(nn.Module):
        def __init__(self):
            super(LinearRegression, self).__init__()
            self.linear = nn.Linear(1, 1)  # 输入维度是1,输出维度也是1
    
        def forward(self, x):
            return self.linear(x)

2.准备训练数据:

  • x_trainy_train 分别是输入和目标输出的训练数据。每个张量表示一个样本,x_train 中的每个元素是一个维度为1的张量,因为模型的输入维度是1。

    python 复制代码
    x_train = torch.tensor([[1.0], [2.0], [3.0]])
    y_train = torch.tensor([[2.0], [4.0], [6.0]])

3.实例化模型,损失函数和优化器:

  • model 是我们定义的 LinearRegression 类的一个实例,即我们要训练的线性回归模型。

  • criterion 是损失函数,这里选择了均方误差损失(MSE Loss),用于衡量预测值与实际值之间的差异。

  • optimizer 是优化器,这里选择了随机梯度下降(SGD),用于更新模型参数以最小化损失。

    python 复制代码
    model = LinearRegression()
    criterion = nn.MSELoss()  # 均方误差损失函数
    optimizer = optim.SGD(model.parameters(), lr=0.01)  # 随机梯度下降优化器

4.训练模型:

  • 这里进行了1000次迭代的训练过程。

  • 在每个迭代中,首先进行前向传播,计算模型对 x_train 的预测输出 outputs,然后计算损失 loss

  • 调用 optimizer.zero_grad() 来++清空之前的梯度++ ,然后调用 loss.backward()++自动计算梯度++ ,最后调用 optimizer.step() 来++更新模型参数++ 。

    python 复制代码
    epochs = 1000
    for epoch in range(epochs):
        # 前向传播
        outputs = model(x_train)
        loss = criterion(outputs, y_train)
    
        # 反向传播
        optimizer.zero_grad()  # 清空之前的梯度
        loss.backward()  # 自动计算梯度
        optimizer.step()  # 更新模型参数
    
        if (epoch+1) % 100 == 0:
            print(f'Epoch [{epoch+1}/{epochs}], Loss: {loss.item():.4f}')

5.测试模型:

  • x_test 是用来测试模型的输入数据,这里表示输入为4.0。

  • model(x_test)x_test 进行前向传播,得到预测结果 predicted

  • predicted.item() 取出预测结果的标量值并打印出来。

    python 复制代码
    x_test = torch.tensor([[4.0]])
    predicted = model(x_test)
    print(f'预测值: {predicted.item():.4f}')

运行结果:

运行结果如下:

相关推荐
idealmu29 分钟前
知识蒸馏(KD)详解一:认识一下BERT 模型
人工智能·深度学习·bert
Cathyqiii30 分钟前
生成对抗网络(GAN)
人工智能·深度学习·计算机视觉
我爱挣钱我也要早睡!1 小时前
Java 复习笔记
java·开发语言·笔记
ai产品老杨2 小时前
打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程的智慧工业开源了
人工智能·开源·音视频·能源
小陈phd2 小时前
高级RAG策略学习(五)——llama_index实现上下文窗口增强检索RAG
人工智能
凯禾瑞华养老实训室4 小时前
人才教育导向下:老年生活照护实训室助力提升学生老年照护服务能力
人工智能
luckys.one4 小时前
第9篇:Freqtrade量化交易之config.json 基础入门与初始化
javascript·数据库·python·mysql·算法·json·区块链
湫兮之风5 小时前
Opencv: cv::LUT()深入解析图像块快速查表变换
人工智能·opencv·计算机视觉
大翻哥哥5 小时前
Python 2025:量化金融与智能交易的新纪元
开发语言·python·金融
Christo36 小时前
TFS-2018《On the convergence of the sparse possibilistic c-means algorithm》
人工智能·算法·机器学习·数据挖掘