采用自动微分进行模型的训练

自动微分训练模型

简单代码实现:

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim

# 定义一个简单的线性回归模型
class LinearRegression(nn.Module):
    def __init__(self):
        super(LinearRegression, self).__init__()
        self.linear = nn.Linear(1, 1)  # 输入维度是1,输出维度也是1

    def forward(self, x):
        return self.linear(x)

# 准备训练数据
x_train = torch.tensor([[1.0], [2.0], [3.0]])
y_train = torch.tensor([[2.0], [4.0], [6.0]])

# 实例化模型、损失函数和优化器
model = LinearRegression()
criterion = nn.MSELoss()  # 均方误差损失函数
optimizer = optim.SGD(model.parameters(), lr=0.01)  # 随机梯度下降优化器

# 训练模型
epochs = 1000
for epoch in range(epochs):
    # 前向传播
    outputs = model(x_train)
    loss = criterion(outputs, y_train)

    # 反向传播
    optimizer.zero_grad()  # 清空之前的梯度
    loss.backward()  # 自动计算梯度
    optimizer.step()  # 更新模型参数

    if (epoch+1) % 100 == 0:
        print(f'Epoch [{epoch+1}/{epochs}], Loss: {loss.item():.4f}')

# 测试模型
x_test = torch.tensor([[4.0]])
predicted = model(x_test)
print(f'预测值: {predicted.item():.4f}')

代码分解:

1.定义一个简单的线性回归模型:

  • LinearRegression 类继承自nn.Module,这是所有神经网络模型的基类。

  • __init__ 方法中,定义了一个线性层 self.linear,它的输入维度是1,输出维度也是1。

  • forward 方法定义了数据在模型中的传播路径,即输入 x 经过 self.linear 层后得到输出。

    python 复制代码
    class LinearRegression(nn.Module):
        def __init__(self):
            super(LinearRegression, self).__init__()
            self.linear = nn.Linear(1, 1)  # 输入维度是1,输出维度也是1
    
        def forward(self, x):
            return self.linear(x)

2.准备训练数据:

  • x_trainy_train 分别是输入和目标输出的训练数据。每个张量表示一个样本,x_train 中的每个元素是一个维度为1的张量,因为模型的输入维度是1。

    python 复制代码
    x_train = torch.tensor([[1.0], [2.0], [3.0]])
    y_train = torch.tensor([[2.0], [4.0], [6.0]])

3.实例化模型,损失函数和优化器:

  • model 是我们定义的 LinearRegression 类的一个实例,即我们要训练的线性回归模型。

  • criterion 是损失函数,这里选择了均方误差损失(MSE Loss),用于衡量预测值与实际值之间的差异。

  • optimizer 是优化器,这里选择了随机梯度下降(SGD),用于更新模型参数以最小化损失。

    python 复制代码
    model = LinearRegression()
    criterion = nn.MSELoss()  # 均方误差损失函数
    optimizer = optim.SGD(model.parameters(), lr=0.01)  # 随机梯度下降优化器

4.训练模型:

  • 这里进行了1000次迭代的训练过程。

  • 在每个迭代中,首先进行前向传播,计算模型对 x_train 的预测输出 outputs,然后计算损失 loss

  • 调用 optimizer.zero_grad() 来++清空之前的梯度++ ,然后调用 loss.backward()++自动计算梯度++ ,最后调用 optimizer.step() 来++更新模型参数++ 。

    python 复制代码
    epochs = 1000
    for epoch in range(epochs):
        # 前向传播
        outputs = model(x_train)
        loss = criterion(outputs, y_train)
    
        # 反向传播
        optimizer.zero_grad()  # 清空之前的梯度
        loss.backward()  # 自动计算梯度
        optimizer.step()  # 更新模型参数
    
        if (epoch+1) % 100 == 0:
            print(f'Epoch [{epoch+1}/{epochs}], Loss: {loss.item():.4f}')

5.测试模型:

  • x_test 是用来测试模型的输入数据,这里表示输入为4.0。

  • model(x_test)x_test 进行前向传播,得到预测结果 predicted

  • predicted.item() 取出预测结果的标量值并打印出来。

    python 复制代码
    x_test = torch.tensor([[4.0]])
    predicted = model(x_test)
    print(f'预测值: {predicted.item():.4f}')

运行结果:

运行结果如下:

相关推荐
佚明zj37 分钟前
全卷积和全连接
人工智能·深度学习
龙鸣丿2 小时前
Linux基础学习笔记
linux·笔记·学习
一点媛艺3 小时前
Kotlin函数由易到难
开发语言·python·kotlin
qzhqbb3 小时前
基于统计方法的语言模型
人工智能·语言模型·easyui
冷眼看人间恩怨4 小时前
【话题讨论】AI大模型重塑软件开发:定义、应用、优势与挑战
人工智能·ai编程·软件开发
2401_883041084 小时前
新锐品牌电商代运营公司都有哪些?
大数据·人工智能
魔道不误砍柴功4 小时前
Java 中如何巧妙应用 Function 让方法复用性更强
java·开发语言·python
Nu11PointerException4 小时前
JAVA笔记 | ResponseBodyEmitter等异步流式接口快速学习
笔记·学习
_.Switch4 小时前
高级Python自动化运维:容器安全与网络策略的深度解析
运维·网络·python·安全·自动化·devops
AI极客菌5 小时前
Controlnet作者新作IC-light V2:基于FLUX训练,支持处理风格化图像,细节远高于SD1.5。
人工智能·计算机视觉·ai作画·stable diffusion·aigc·flux·人工智能作画