【线性代数】几种行/列向量相乘的情况讨论

【线性代数】几种行/列向量相乘的情况讨论

向量的定义

由 n n n 个数组成的有序数组叫做 n 维向量 n\ 维向量 n 维向量 ,例如
a = ( a 1 , a 2 , . . . a n ) T ,被成为列向量 \mathbf{a}=(a_1,a_2,...a_n)^T,被成为列向量 a=(a1,a2,...an)T,被成为列向量


a = ( a 1 , a 2 , . . . a n ) ,被成为行向量 \mathbf{a}=(a_1,a_2,...a_n),被成为行向量 a=(a1,a2,...an),被成为行向量


向量相乘的情况讨论

假设有列向量 α \mathbf{\alpha} α 和 β \mathbf{\beta} β
α = [ a 1 , a 2 , a 3 ] T \mathbf{\alpha}=[a_1,a_2,a_3]^T α=[a1,a2,a3]T

β = [ b 1 , b 2 , b 3 ] T \mathbf{\beta}=[b_1,b_2,b_3]^T β=[b1,b2,b3]T


列向量 × \times × 行向量

α α T = [ a 1 a 2 a 3 ] [ a 1 a 2 a 3 ] = [ a 1 2 a 1 a 2 a 1 a 3 a 2 a 1 a 2 2 a 2 a 3 a 3 a 1 a 3 a 2 a 3 2 ] \mathbf{\alpha \alpha^T}=\begin{bmatrix} a_1\\a_2\\a_3 \end{bmatrix} \begin{bmatrix} a_1&a_2&a_3 \end{bmatrix}=\begin{bmatrix} {a_1}^2&a_1a_2&a_1a_3\\ a_2a_1&a_2^2&a_2a_3\\ a_3a_1&a_3a_2&a_3^2 \end{bmatrix} ααT= a1a2a3 [a1a2a3]= a12a2a1a3a1a1a2a22a3a2a1a3a2a3a32

α β T = [ a 1 a 2 a 3 ] [ b 1 b 2 b 3 ] = [ a 1 b 1 a 1 b 2 a 1 b 3 a 2 b 1 a 2 b 2 a 2 b 3 a 3 b 1 a 3 b 2 a 3 b 3 ] \mathbf{\alpha \beta^T}=\begin{bmatrix} a_1\\a_2\\a_3 \end{bmatrix} \begin{bmatrix} b_1&b_2&b_3 \end{bmatrix}=\begin{bmatrix} a_1b_1&a_1b_2&a_1b_3\\ a_2b_1&a_2b_2&a_2b_3\\ a_3b_1&a_3b_2&a_3b_3 \end{bmatrix} αβT= a1a2a3 [b1b2b3]= a1b1a2b1a3b1a1b2a2b2a3b2a1b3a2b3a3b3

β α T = [ b 1 b 2 b 3 ] [ a 1 a 2 a 3 ] = [ a 1 b 1 a 2 b 1 a 3 b 1 a 1 b 2 a 2 b 2 a 3 b 2 a 1 b 3 a 2 b 3 a 3 b 3 ] \mathbf{\beta \alpha^T}=\begin{bmatrix} b_1\\b_2\\b_3 \end{bmatrix} \begin{bmatrix} a_1&a_2&a_3 \end{bmatrix}=\begin{bmatrix} a_1b_1&a_2b_1&a_3b_1\\ a_1b_2&a_2b_2&a_3b_2\\ a_1b_3&a_2b_3&a_3b_3 \end{bmatrix} βαT= b1b2b3 [a1a2a3]= a1b1a1b2a1b3a2b1a2b2a2b3a3b1a3b2a3b3

  • 通过观察以上三个式子可知, n n n 维列向量乘上 n n n 维行向量,结果是一个 n × n n\times n n×n矩阵

行向量 × \times × 列向量

α T α = [ a 1 a 2 a 3 ] [ a 1 a 2 a 3 ] = a 1 2 + a 2 2 + a 3 2 \mathbf{\alpha^T \alpha}= \begin{bmatrix} a_1&a_2&a_3 \end{bmatrix} \begin{bmatrix} a_1\\a_2\\a_3 \end{bmatrix}=a_1^2+a_2^2+a_3^2 αTα=[a1a2a3] a1a2a3 =a12+a22+a32

α T β = [ a 1 a 2 a 3 ] [ b 1 b 2 b 3 ] = a 1 b 1 + a 2 b 2 + a 3 b 3 \mathbf{\alpha^T \beta}= \begin{bmatrix} a_1&a_2&a_3 \end{bmatrix}\begin{bmatrix} b_1\\b_2\\b_3 \end{bmatrix}=a_1b_1+a_2b_2+a_3b_3 αTβ=[a1a2a3] b1b2b3 =a1b1+a2b2+a3b3

β T α = [ b 1 b 2 b 3 ] [ a 1 a 2 a 3 ] = a 1 b 1 + a 2 b 2 + a 3 b 3 \mathbf{\beta^T \alpha}=\begin{bmatrix} b_1&b_2&b_3 \end{bmatrix}\begin{bmatrix} a_1\\a_2\\a_3 \end{bmatrix}=a_1b_1+a_2b_2+a_3b_3 βTα=[b1b2b3] a1a2a3 =a1b1+a2b2+a3b3

  • 通过观察以上三个式子可知, n n n 维行向量乘上 n n n 维列向量,结果是一个 数
相关推荐
Dovis(誓平步青云)1 分钟前
深挖 DeepSeek 隐藏玩法·智能炼金术2.0版本
人工智能·深度学习·机器学习·数据挖掘·服务发现·智慧城市
陈明勇3 分钟前
一文掌握 MCP 上下文协议:从理论到实践
人工智能·后端·mcp
zskj_zhyl5 分钟前
智绅科技全场景智慧养老系统:助力老年人畅享幸福晚年
人工智能·科技
weixin_3875456412 分钟前
探索 GitHub Copilot:当 AI 成为你的贴身编码助手
人工智能·github·copilot
zidea12 分钟前
我和我的 AI Agent(1) 异步优先、结构化输出以及如何处理依赖
人工智能·python·trae
ZTLJQ14 分钟前
基于机器学习的三国时期诸葛亮北伐失败因素量化分析
人工智能·算法·机器学习
Cynthia的梦20 分钟前
Linux学习-Linux进程间通信(IPC)聊天程序实践指南
linux·运维·学习
赵钰老师1 小时前
【Deepseek、ChatGPT】智能气候前沿:AI Agent结合机器学习与深度学习在全球气候变化驱动因素预测中的应用
人工智能·python·深度学习·机器学习·数据分析
AIGC-Lison1 小时前
【CSDN首发】Stable Diffusion从零到精通学习路线分享
人工智能·ai·stable diffusion·aigc·sd
AI绘画咪酱1 小时前
Stable Diffusion|Ai赋能电商 Inpaint Anything
人工智能·ai·ai作画·stable diffusion·sd·ai教程·sd教程