物理学基础精解【7】

文章目录

平面方程

直角坐标及基本运算

  • 向量的四则运算

下面由文心一言自动生成

  • 向量的四则运算主要包括加法、减法、数乘(标量乘法)和数量积(点积或内积),但通常不直接称为"除法",因为向量没有直接的"除法"定义。不过,可以通过一些方式(如使用逆矩阵或叉积的特殊情况)来间接实现类似"除法"的效果,但这些通常不在基础向量四则运算的范畴内。

1. 向量加法

向量加法遵循平行四边形法则或三角形法则。给定两个向量 a ⃗ \vec{a} a 和 b ⃗ \vec{b} b ,它们的和 a ⃗ + b ⃗ \vec{a} + \vec{b} a +b 是一个新的向量,其起点与 a ⃗ \vec{a} a 的起点相同,终点与从 a ⃗ \vec{a} a 的终点出发、沿 b ⃗ \vec{b} b

方向的向量终点相同。

2. 向量减法

向量减法可以看作是加上一个向量的相反向量。即, a ⃗ − b ⃗ = a ⃗ + ( − b ⃗ ) \vec{a} - \vec{b} = \vec{a} + (-\vec{b}) a −b =a +(−b )。这里, − b ⃗ -\vec{b} −b 是 b ⃗ \vec{b} b 的相反向量,其大小与 b ⃗ \vec{b} b 相同但方向相反。

3. 数乘(标量乘法)

数乘是将一个向量与一个标量(实数)相乘的运算。给定一个向量 a ⃗ \vec{a} a 和一个标量 k k k,数乘的结果 k a ⃗ k\vec{a} ka

是一个新的向量,其大小是 a ⃗ \vec{a} a 的大小的 k k k 倍(如果 k k k 是负数,则方向相反),方向与原向量相同(除非 k k k

为负)。

4. 数量积(点积或内积)

数量积是两个向量之间的一种运算,其结果是一个标量(实数)。给定两个向量 a ⃗ \vec{a} a 和 b ⃗ \vec{b} b ,它们的数量积
a ⃗ ⋅ b ⃗ \vec{a} \cdot \vec{b} a ⋅b 定义为 ∣ a ⃗ ∣ × ∣ b ⃗ ∣ × cos ⁡ θ |\vec{a}| \times |\vec{b}| \times \cos \theta ∣a ∣×∣b ∣×cosθ,其中 θ \theta θ 是 a ⃗ \vec{a} a 和 b ⃗ \vec{b} b

之间的夹角。数量积满足交换律、分配律等性质,但不满足结合律(因为结果是一个标量)。

注意

  • 向量之间不能直接进行"除法",但可以通过其他方式(如解线性方程组或使用逆矩阵)来找到与给定向量和结果向量相关的第三个向量。
  • 叉积是另一种向量运算,但它不是四则运算之一,并且只在三维空间中定义。叉积的结果是一个向量,其大小与两个原向量的"平行四边形"面积成正比,方向垂直于这两个向量所构成的平面。

1. 向量加法

例子

设有两个二维向量 a ⃗ = ( 2 , 3 ) \vec{a} = (2, 3) a =(2,3) 和 b ⃗ = ( 4 , 1 ) \vec{b} = (4, 1) b =(4,1)。

根据向量加法的定义, a ⃗ + b ⃗ = ( 2 + 4 , 3 + 1 ) = ( 6 , 4 ) \vec{a} + \vec{b} = (2+4, 3+1) = (6, 4) a +b =(2+4,3+1)=(6,4)。

2. 向量减法

例子

继续使用上面的向量 a ⃗ = ( 2 , 3 ) \vec{a} = (2, 3) a =(2,3) 和 b ⃗ = ( 4 , 1 ) \vec{b} = (4, 1) b =(4,1)。

根据向量减法的定义, a ⃗ − b ⃗ = a ⃗ + ( − b ⃗ ) = ( 2 , 3 ) + ( − 4 , − 1 ) = ( 2 − 4 , 3 − 1 ) = ( − 2 , 2 ) \vec{a} - \vec{b} = \vec{a} + (-\vec{b}) = (2, 3) + (-4, -1) = (2-4, 3-1) = (-2, 2) a −b =a +(−b )=(2,3)+(−4,−1)=(2−4,3−1)=(−2,2)。

3. 数乘(标量乘法)

例子

设有一个二维向量 c ⃗ = ( 1 , − 2 ) \vec{c} = (1, -2) c =(1,−2) 和一个标量 k = 3 k = 3 k=3。

根据数乘的定义, k c ⃗ = 3 ( 1 , − 2 ) = ( 3 × 1 , 3 × − 2 ) = ( 3 , − 6 ) k\vec{c} = 3(1, -2) = (3 \times 1, 3 \times -2) = (3, -6) kc =3(1,−2)=(3×1,3×−2)=(3,−6)。

4. 数量积(点积或内积)

例子

设有两个二维向量 d ⃗ = ( 2 , 3 ) \vec{d} = (2, 3) d =(2,3) 和 e ⃗ = ( 1 , 4 ) \vec{e} = (1, 4) e =(1,4)。

首先,计算这两个向量之间的夹角 θ \theta θ 的余弦值(虽然在这个例子中我们不需要真正计算出 θ \theta θ

的值)。但我们可以直接利用数量积的公式:

d ⃗ ⋅ e ⃗ = 2 × 1 + 3 × 4 = 2 + 12 = 14 \vec{d} \cdot \vec{e} = 2 \times 1 + 3 \times 4 = 2 + 12 = 14 d ⋅e =2×1+3×4=2+12=14

注意,数量积的结果是一个标量,而不是向量。它表示了这两个向量在它们共同方向上的"投影长度"的乘积。

以上就是向量四则运算的例子。希望这些例子能帮助你更好地理解向量的基本运算。

  • 数轴是一条直线,直线上的点与数之间为一一对应关系。
  • 笛卡尔直角坐标系
  1. 平面上的坐标系 x O y xOy xOy让平面与有充实数对(x,y)建立一一对应关系 。
  2. 象限:
  • 坐标变换
  1. 平面上某点可对应于多个不同坐标系和不同的坐标
  2. 坐标系 x ′ O ′ y ′ 坐标系x'O'y' 坐标系x′O′y′由坐标系统 x O y xOy xOy经过两种运动后得到的$。
    ( 1 ) 坐标轴方向不变,轴平移。原点移动: O → O ′ , x O y → x ′ ′ O ′ Y ′ ′ (1) 坐标轴方向不变,轴平移。原点移动:O\rightarrow O' ,xOy \rightarrow x''O'Y'' (1)坐标轴方向不变,轴平移。原点移动:O→O′,xOy→x′′O′Y′′,
    ( 2 ) 原点不动,坐标轴旋转, x ′ ′ O ′ y ′ ′ → x ′ O ′ y ′ (2) 原点不动,坐标轴旋转,x''O'y''\rightarrow x'O'y' (2)原点不动,坐标轴旋转,x′′O′y′′→x′O′y′
    ( 3 ) 上面的两种变换,先后顺序不影响最后结果,可以先旋转再平移,也可反过来,等等 (3) 上面的两种变换,先后顺序不影响最后结果,可以先旋转再平移,也可反过来,等等 (3)上面的两种变换,先后顺序不影响最后结果,可以先旋转再平移,也可反过来,等等。
  3. 轴平移
    新坐标 x ′ O ′ y ′ ,原坐标 x O y a 、 b 表示 O ′ 在原坐标系的位置。 旧坐标表示新坐标: x ′ = x − a , y ′ = y − b 新坐标表示旧坐标: x = x ′ + a , y = y ′ + b 新坐标x'O'y',原坐标xOy \\a、b表示O'在原坐标系的位置。 \\旧坐标表示新坐标:x'=x-a,y'=y-b \\新坐标表示旧坐标:x=x'+a,y=y'+b 新坐标x′O′y′,原坐标xOya、b表示O′在原坐标系的位置。旧坐标表示新坐标:x′=x−a,y′=y−b新坐标表示旧坐标:x=x′+a,y=y′+b
  4. 轴平移旋转
    新坐标 x ′ O ′ y ′ ,原坐标 x O y a 、 b 表示 O ′ 在原坐标系的位置。 O 不动,两轴旋转 a 角 旧坐标表示新坐标: x ′ = x c o s a + y s i n a y ′ = − x s i n a + y c o s a 新坐标表示旧坐标: x = x ′ c o s a − y ′ s i n a y = x ′ s i n a + y ′ c o s a 新坐标x'O'y',原坐标xOy \\a、b表示O'在原坐标系的位置。 \\O不动,两轴旋转a角 \\旧坐标表示新坐标: \\x'=xcosa+ysina \\y'=-xsina+ycosa \\新坐标表示旧坐标: \\x=x'cosa-y'sina \\y=x'sina+y'cosa 新坐标x′O′y′,原坐标xOya、b表示O′在原坐标系的位置。O不动,两轴旋转a角旧坐标表示新坐标:x′=xcosa+ysinay′=−xsina+ycosa新坐标表示旧坐标:x=x′cosa−y′sinay=x′sina+y′cosa
  • 两点距离
    两点间的距离是几何学中的一个基本概念,它表示两个点之间的直线距离。

下面内容由文心一言自动生成

在二维平面上,我们通常使用直角坐标系来表示点,其中每个点由一对坐标(x, y)确定。

假设有两个点 A ( x 1 , y 1 ) A(x_1, y_1) A(x1,y1) 和 B ( x 2 , y 2 ) B(x_2, y_2) B(x2,y2),则这两点间的距离 d d d 可以用以下公式计算:

d = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} d=(x2−x1)2+(y2−y1)2

这个公式来源于勾股定理,即将两点间的线段视为直角三角形的斜边,而 x 2 − x 1 x_2 - x_1 x2−x1 和 y 2 − y 1 y_2 - y_1 y2−y1

则分别是这个直角三角形的两条直角边的长度。

示例

假设有两个点 A ( 3 , 4 ) A(3, 4) A(3,4) 和 B ( 7 , 1 ) B(7, 1) B(7,1),我们需要计算这两点间的距离。

  1. 首先,确定两个点的坐标: x 1 = 3 , y 1 = 4 , x 2 = 7 , y 2 = 1 x_1 = 3, y_1 = 4, x_2 = 7, y_2 = 1 x1=3,y1=4,x2=7,y2=1。
  2. 然后,将这些值代入距离公式中:

d = ( 7 − 3 ) 2 + ( 1 − 4 ) 2 d = \sqrt{(7 - 3)^2 + (1 - 4)^2} d=(7−3)2+(1−4)2

d = 4 2 + ( − 3 ) 2 d = \sqrt{4^2 + (-3)^2} d=42+(−3)2

d = 16 + 9 d = \sqrt{16 + 9} d=16+9

d = 25 d = \sqrt{25} d=25

d = 5 d = 5 d=5

因此,点 A ( 3 , 4 ) A(3, 4) A(3,4) 和点 B ( 7 , 1 ) B(7, 1) B(7,1) 之间的距离是 5 个单位长度。

前面是平面2维的公式,n维空间距离公式如下:

在n维空间中,点之间的距离的计算与二维或三维空间中的计算类似,但涉及更多的坐标轴。假设有两个n维空间中的点 P ( x 1 , x 2 , ... , x n ) P(x_1, x_2, \ldots, x_n) P(x1,x2,...,xn) 和 Q ( y 1 , y 2 , ... , y n ) Q(y_1, y_2, \ldots, y_n) Q(y1,y2,...,yn),则这两点间的距离 d d d 可以用以下公式计算:

d = ( y 1 − x 1 ) 2 + ( y 2 − x 2 ) 2 + ⋯ + ( y n − x n ) 2 d = \sqrt{(y_1 - x_1)^2 + (y_2 - x_2)^2 + \cdots + (y_n - x_n)^2} d=(y1−x1)2+(y2−x2)2+⋯+(yn−xn)2

这个公式是欧几里得距离(Euclidean distance)在n维空间中的推广。它表示两点之间的直线距离,即连接这两点的线段的长度。

示例

假设有两个3维空间中的点 P ( 1 , 2 , 3 ) P(1, 2, 3) P(1,2,3) 和 Q ( 4 , 5 , 6 ) Q(4, 5, 6) Q(4,5,6),我们需要计算这两点间的距离。

  1. 首先,确定两个点的坐标: x 1 = 1 , x 2 = 2 , x 3 = 3 , y 1 = 4 , y 2 = 5 , y 3 = 6 x_1 = 1, x_2 = 2, x_3 = 3, y_1 = 4, y_2 = 5, y_3 = 6 x1=1,x2=2,x3=3,y1=4,y2=5,y3=6。

  2. 然后,将这些值代入n维空间中的距离公式中:

d = ( 4 − 1 ) 2 + ( 5 − 2 ) 2 + ( 6 − 3 ) 2 d = \sqrt{(4 - 1)^2 + (5 - 2)^2 + (6 - 3)^2} d=(4−1)2+(5−2)2+(6−3)2

d = 3 2 + 3 2 + 3 2 d = \sqrt{3^2 + 3^2 + 3^2} d=32+32+32

d = 9 + 9 + 9 d = \sqrt{9 + 9 + 9} d=9+9+9

d = 27 d = \sqrt{27} d=27

d = 3 3 d = 3\sqrt{3} d=33

因此,点 P ( 1 , 2 , 3 ) P(1, 2, 3) P(1,2,3) 和点 Q ( 4 , 5 , 6 ) Q(4, 5, 6) Q(4,5,6) 之间的距离是 3 3 3\sqrt{3} 33 个单位长度。

在n维空间中,无论n的值是多少,距离的计算都遵循上述公式,只是需要考虑更多的坐标轴。

参考文献

1.《高等数学讲义》

2.文心一言

相关推荐
GISMagic18 天前
数学二常用公式(高等数学+线性代数)
线性代数·高等数学
测绘工程师19 天前
[高等数学&学习记录] 泰勒公式
学习·高等数学
测绘工程师24 天前
【高等数学&学习记录】微分中值定理
学习·高等数学
测绘工程师1 个月前
【高等数学&学习记录】导数概念
学习·高等数学
BlackPercy1 个月前
【高等数学】奇点与留数
python·高等数学
MowenPan19952 个月前
高等数学 7.6高阶线性微分方程
笔记·学习·高等数学
MowenPan19952 个月前
高等数学 6.2 定积分在几何学上的应用
笔记·学习·高等数学
BlackPercy2 个月前
【高等数学】多元微分学 (一)
机器学习·高等数学
MowenPan19952 个月前
高等数学 5.5 反常积分的审敛法 Γ函数
笔记·学习·高等数学
威迪斯特2 个月前
2024年诺贝尔物理学奖颁发给机器学习与神经网络领域的研究者,这里面包含的重大意义是什么?
大数据·人工智能·神经网络·机器学习·物理学·诺贝尔·跨学科