Hive企业级调优[5]—— HQL语法优化之数据倾斜

目录

HQL语法优化之数据倾斜

数据倾斜概述

分组聚合导致的数据倾斜

优化说明

优化案例

Join导致的数据倾斜

优化说明

优化案例


HQL语法优化之数据倾斜

数据倾斜概述

数据倾斜问题通常指的是参与计算的数据分布不均,即某个key或某些key的数据量远超其他key,导致在shuffle阶段,大量相同key的数据被发送到同一个Reduce节点,从而使该Reduce节点所需的时间远超其他Reduce节点,成为整个任务的瓶颈。Hive中的数据倾斜常见于分组聚合和join操作的场景中。

分组聚合导致的数据倾斜

优化说明

在Hive中,未经优化的分组聚合是通过一个MapReduce Job来实现的。Map端负责读取数据并按分组字段进行分区,通过shuffle将数据发送到Reduce端,在此完成最终的聚合运算。如果分组字段的值分布不均,则可能导致大量相同key的数据进入同一个Reduce,从而引起数据倾斜。

针对由分组聚合导致的数据倾斜问题,有两种解决思路:

  1. Map-Side聚合 开启Map-Side聚合后,数据会在Map端完成部分聚合工作。即使原始数据是倾斜的,经过Map端的初步聚合后,发送给Reduce的数据也会更加均匀,从而减轻数据倾斜的问题。相关参数包括:

    • set hive.map.aggr=true; (启用map-side聚合)
    • set hive.map.aggr.hash.min.reduction=0.5; (用于检测源表是否适合进行map-side聚合)
    • set hive.groupby.mapaggr.checkinterval=100000; (用于检测源表是否适合map-side聚合的条数)
    • set hive.map.aggr.hash.force.flush.memory.threshold=0.9; (map-side聚合所用的hash table,占用map task堆内存的最大比例)
  2. Skew-GroupBy优化 Skew-GroupBy优化的原理是启动两个MR任务,第一个MR任务按照随机数分区,将数据分散发送到Reduce,完成部分聚合;第二个MR任务按照分组字段分区,完成最终的聚合。相关参数包括:

    • set hive.groupby.skewindata=true; (启用分组聚合数据倾斜优化)
优化案例

示例SQL语句

sql 复制代码
hive (default)> select province_id, count(*) from order_detail group by province_id;

优化思路

  1. Map-Side聚合 设置参数:
    • set hive.map.aggr=true;
    • set hive.groupby.skewindata=false;
  2. Skew-GroupBy优化 设置参数:
    • set hive.groupby.skewindata=true;
    • set hive.map.aggr=false;

Join导致的数据倾斜

优化说明

未经优化的join操作,默认使用common join算法,通过一个MapReduce Job完成计算。Map端负责读取join操作所需表的数据,并按照关联字段进行分区,通过shuffle发送到Reduce端,在此完成最终的join操作。如果关联字段的值分布不均,则可能导致大量相同key的数据进入同一个Reduce,从而引起数据倾斜。

对于由join导致的数据倾斜问题,有如下三种解决方案:

  1. Map Join 使用map join算法可以在Map端完成join操作,无需shuffle和reduce阶段,适用于大表join小表时发生数据倾斜的情况。相关参数包括:

    • set hive.auto.convert.join=true; (启动Map Join自动转换)
    • set hive.mapjoin.smalltable.filesize=250000; (Common Join转为Map Join的判断条件)
    • set hive.auto.convert.join.noconditionaltask=true; (开启无条件转Map Join)
    • set hive.auto.convert.join.noconditionaltask.size=10000000; (无条件转Map Join时的小表之和阈值)
  2. Skew Join Skew Join的原理是为倾斜的大key单独启动一个map join任务进行计算,其余key进行正常的common join。相关参数包括:

    • set hive.optimize.skewjoin=true; (启用skew join优化)
    • set hive.skewjoin.key=100000; (触发skew join的阈值)
  3. 调整SQL语句 若参与join的两表均为大表,其中一张表的数据是倾斜的,可以通过调整SQL语句的方式来进行优化。

优化案例

示例SQL语句

sql 复制代码
hive (default)> select * from order_detail od join province_info pi on od.province_id=pi.id;

优化思路

  1. Map Join 设置参数:

    • set hive.auto.convert.join=true;
    • set hive.optimize.skewjoin=false;
  2. Skew Join 设置参数:

    • set hive.optimize.skewjoin=true;
    • set hive.auto.convert.join=false;
相关推荐
大数据CLUB2 小时前
基于spark的澳洲光伏发电站选址预测
大数据·hadoop·分布式·数据分析·spark·数据开发
ratbag6720133 小时前
当环保遇上大数据:生态环境大数据技术专业的课程侧重哪些领域?
大数据
计算机编程小央姐4 小时前
跟上大数据时代步伐:食物营养数据可视化分析系统技术前沿解析
大数据·hadoop·信息可视化·spark·django·课程设计·食物
智数研析社5 小时前
9120 部 TMDb 高分电影数据集 | 7 列全维度指标 (评分 / 热度 / 剧情)+API 权威源 | 电影趋势分析 / 推荐系统 / NLP 建模用
大数据·人工智能·python·深度学习·数据分析·数据集·数据清洗
潘达斯奈基~5 小时前
《大数据之路1》笔记2:数据模型
大数据·笔记
寻星探路6 小时前
数据库造神计划第六天---增删改查(CRUD)(2)
java·大数据·数据库
翰林小院7 小时前
【大数据专栏】流式处理框架-Apache Fink
大数据·flink
懒虫虫~8 小时前
通过内存去重替换SQL中distinct,优化SQL查询效率
java·sql·慢sql治理
孟意昶8 小时前
Spark专题-第一部分:Spark 核心概述(2)-Spark 应用核心组件剖析
大数据·spark·big data
逛逛GitHub8 小时前
1 个神级智能问数工具,刚开源就 1500 Star 了。
sql·github