基于 LangChain 的自动化测试用例的生成与执行

应用价值

  • 通过人工智能代替人工操作的部分,节省时间,提升效率。
  • 通过封装更多的 Tools,让 Agent 更为智能。

实践演练

实现原理
实现思路

在理解需求之后,我们可以了解到我们需要让 Agent 具备两个功能:

  1. 输入源码信息,生成 python 文件。
  2. 输入文件名,执行 pytest 测试文件功能。

如此,可以通过如下两个步骤实现需求:

  1. 工具包封装。
  2. 实现 Agent。
工具包封装

为了让工具包更易被大模型理解,我们将注释调整为英文,提升准确率。同时为了传参的时候不出现格式错误问题,通过args_schema限制参数结构与格式(tools 章节有具体讲解)。

from langchain_core.tools import tool
from pydantic.v1 import BaseModel, Field

class PythonFileInput(BaseModel):
    # 定义参数的描述    
    filename: str = Field(description="filename")    
    source_code: str = Field(description="source code data")
    
class PytestFileName(BaseModel):
    # 定义参数的描述    
    filename: str = Field(description="The name of the file to be executed")
    
@tool(args_schema=PythonFileInput)
def write_file(filename, source_code):
    """    
    Generate python files based on input source code    
    """    
    with open(filename, "w") as f:    
        f.write(source_code)
        

@tool(args_schema=PytestFileName)
def execute_test_file(filename):
    """    
    Pass in the file name, execute the test case and return the execution result    
    """    
    import subprocess    
    # 使用subprocess模块执行pytest命令    
    result = subprocess.run(['pytest', filename], capture_output=True, text=True)    
    # 检查pytest的执行结果    
    if result.returncode == 0:   
        print("测试运行成功!")    
    else:   
        print("测试运行失败:")    
    print(result.stdout)    
    return result.stdout
通过 AGENT 实现需求
  1. 首先封装 Agent,绑定工具,输入提示词。在示例中,是在 LangChain 官方提供的 structured-chat-agent提示词基础之上修改的提示词,添加了一个code变量。目的是为了后面 code 可以由其他的 chain 的执行结果而来。

    注意:需要再原提示词的基础上添加 {code} 变量

    prompt = hub.pull("hwchase17/structured-chat-agent")

    llm = ChatOpenAI()

    agent1 = create_structured_chat_agent(llm, tools_all, prompt)

    agent_executor = AgentExecutor(
    agent=agent1, tools=tools_all,
    verbose=True,
    return_intermediate_steps=True,
    handle_parsing_errors=True)

    if name == 'main':
    agent_executor.invoke({"input": "请根据以上源码生成文件", "code": """def test_demo(): return True"""})

由以上的步骤,即可生成一个源码文件:

\1. 在生成源码文件后,可以继续补充提示词,要求Agent 执行对应的测试用例:

到这里,通过 Agent 就能自动生成测试用例文件执行测试用例了。

与其他的场景结合

在前面的章节中,已经实现了自动生成接口自动化测试用例的操作。可以直接与前面的操作结合,自动生成接口自动化测试用例,并执行测试用用例。

注意:load_case 如何实现在前面章节:《基于LangChain手工测试用例转接口自动化测试生成工具》,已有对应讲解

# load_case 的返回结果是接口的自动化测试用例
chain = (
        RunnablePassthrough.assign(code=load_case) | agent1
)

agent_executor = AgentExecutor(
    agent=chain, tools=tools_all,    
    verbose=True,    
    return_intermediate_steps=True,    
    handle_parsing_errors=True)
    
if __name__ == '__main__':
    agent_executor.invoke({"input": """      
               请根据以下步骤完成我让你完成操作,没有完成所有步骤不能停止:                
               1. 先根据以上源码生成文件。                
               2. 根据上一步生成的源码文件,进行执行测试用例操作,并返回终的执行结果                
               """})

执行之后,即可在控制台看到生成的接口自动化测试用例的执行记录。

总结

  1. 自动化测试用例的生成与执行的实现原理。
  2. 自动化测试用例的生成与执行的实现思路。
  3. 利用 Agent 实现自动化测试用例的生成与执行。

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

四、AI大模型商业化落地方案

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

相关推荐
游客520几秒前
opencv中的各种滤波器简介
图像处理·人工智能·python·opencv·计算机视觉
一位小说男主几秒前
编码器与解码器:从‘乱码’到‘通话’
人工智能·深度学习
小张认为的测试10 分钟前
Linux性能监控命令_nmon 安装与使用以及生成分析Excel图表
linux·服务器·测试工具·自动化·php·excel·压力测试
深圳南柯电子17 分钟前
深圳南柯电子|电子设备EMC测试整改:常见问题与解决方案
人工智能
Kai HVZ18 分钟前
《OpenCV计算机视觉》--介绍及基础操作
人工智能·opencv·计算机视觉
biter008822 分钟前
opencv(15) OpenCV背景减除器(Background Subtractors)学习
人工智能·opencv·学习
吃个糖糖29 分钟前
35 Opencv 亚像素角点检测
人工智能·opencv·计算机视觉
IT古董1 小时前
【漫话机器学习系列】017.大O算法(Big-O Notation)
人工智能·机器学习
凯哥是个大帅比1 小时前
人工智能ACA(五)--深度学习基础
人工智能·深度学习
m0_748232922 小时前
DALL-M:基于大语言模型的上下文感知临床数据增强方法 ,补充
人工智能·语言模型·自然语言处理