[综述笔记]Deep learning for brain disorder diagnosis based on fMRI images

论文网址:Deep learning for brain disorder diagnosis based on fMRI images - ScienceDirect

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用

目录

[1. 心得](#1. 心得)

[2. 论文逐段精读](#2. 论文逐段精读)

[2.1. Abstract](#2.1. Abstract)

[2.2. Introduction](#2.2. Introduction)

[2.3. The overview of deep learning methods](#2.3. The overview of deep learning methods)

[2.3.1. Artificial intelligence, machine learning and deep learning](#2.3.1. Artificial intelligence, machine learning and deep learning)

[2.3.2. Brief introduction to deep learning techniques in fMRI analysis](#2.3.2. Brief introduction to deep learning techniques in fMRI analysis)

[2.4. Deep learning in brain disorder diagnosis](#2.4. Deep learning in brain disorder diagnosis)

[2.4.1. Functional connectivity model based approaches](#2.4.1. Functional connectivity model based approaches)

[2.4.2. 2D/3D image processing perspective](#2.4.2. 2D/3D image processing perspective)

[2.4.3. fMRI images as a time series](#2.4.3. fMRI images as a time series)

[2.4.4. Joint spatial and temporal feature exploration](#2.4.4. Joint spatial and temporal feature exploration)

[2.4.5. Other deep learning models and training techniques](#2.4.5. Other deep learning models and training techniques)

[2.4.6. Summary](#2.4.6. Summary)

[2.5. Challenges and future outlook](#2.5. Challenges and future outlook)

[2.5.1. Discussions](#2.5.1. Discussions)

[2.5.2. Future outlook](#2.5.2. Future outlook)

[3. Reference](#3. Reference)


1. 心得

(1)少儿科普是吧?不推荐已经很熟悉这个领域的人看

(2)我怎么才刚开始就要看不下去了

(3)仅用图表示最基础的结构(如CNN或AE),但用过量的文字讲述一万个模型,是一种,让人,极为没有耐心的写作方式

(4)有一种站在未来看过去的感觉...但是吧...有些过去不是非要看的...

2. 论文逐段精读

2.1. Abstract

①fMRI can be regarded as image, time series and image series

2.2. Introduction

①Introducing fMRI itself→applications→pros and cons→compared with other imaging methods→introducing ML and AI

2.3. The overview of deep learning methods

2.3.1. Artificial intelligence, machine learning and deep learning

(1)Artificial intelligence

①介绍了...AI...

②The relationship between AI, ML and DL:

(2)Machine learning

①Categories of ML: supervised learning, unsupervised Learning, semi-supervised learning and reinforcement learning

(3)Deep learning

①...有出色的性能??受益于计算能力??fine

2.3.2. Brief introduction to deep learning techniques in fMRI analysis

①Common use DNN: CNN and RNN

②Workflow of deep learning:

(1)Convolutional neural networks

①介绍CNN????卷积??!激活函数??

②图像分类的简化CNN网络???图?和上一张图有什么不一样??

(2)Recurrent neural network

①Famous RNN: LSTM and GRU

(3)Auto encoder and decoder

①An example AE:

2.4. Deep learning in brain disorder diagnosis

2.4.1. Functional connectivity model based approaches

(1)Functional connectivity model construction

①Static and dynamic FC construction methods:

(2)FC based DL methods

①ML pipeline:

(3)Direct use of functional connectivity measures

①Directly classify FC matrix

②疯狂地用文字介绍了一堆方法

(4)End-to-end model for disease classification

①继续介绍一堆模型

(5)Connectivity matrices as an analogy to 2D images

①...Some researchers consider fMRI as 2D images and Conv it

(6)Comment on functional connectivity based methods

①There are some noises in raw fMRI data

2.4.2. 2D/3D image processing perspective

(1)4D fMRI to 2D images conversion

①列举了一堆4D转2D然后卷积的办法,从引用就能看出这些办法其实很老了,全在2020之前,而且这本来就有那么点不合理(虽然这篇是22写的啦...所以其实对于现在的我们参考性不是很强)

(2)3D neural network

①扒拉了一堆模型

(3)Challenges and opportunities

①For limited samples, the prior kownledge is feasible

2.4.3. fMRI images as a time series

①继续列

2.4.4. Joint spatial and temporal feature exploration

①Lists models with spatial and temporal methods

2.4.5. Other deep learning models and training techniques

(1)Graph CNN and its applications

(2)Generative models

(3)Transfer learning

2.4.6. Summary

①作者觉得以后深度学习会在临床诊断中大放异彩

2.5. Challenges and future outlook

2.5.1. Discussions

①Non of a DL model can contain all the tasks of disease diagnosis(确实,作者当时写的时候大模型还没有风靡,可能确实觉得,一个模型很难顾及到所有方面)

②Challenges: a) costs, b) interpretability

2.5.2. Future outlook

①"尽管近年来使用 fMRI 图像在脑部疾病诊断方面取得了巨大成功,但距离临床诊断要求还很远",没错其实...2024年仍然还有一些距离,还需要一点重大突破...

②Researchers should mix all the data together, including electronic medical record, EEG, structural MRI image etc...确实,现在多模态还发展得不错

3. Reference

Yin, W., Li, L., & Wu, F. (2022) 'Deep learning for brain disorder diagnosis based on fMRI images', Neurocomputing, 469: 332-345. doi: https://doi.org/10.1016/j.neucom.2020.05.113

相关推荐
renhongxia114 小时前
基于多智能体深度强化学习的高炮反无人机算法
图像处理·人工智能·深度学习·无人机
wearegogog12314 小时前
压缩感知和稀疏表示恢复算法中的L1同伦算法
人工智能·算法
阿水实证通14 小时前
DoubleML+FLAML实现双重机器学习超参数的自动调优(python实现路径)
人工智能·python·机器学习·实证分析
容智信息14 小时前
容智信息加入大模型产业联盟,Hyper Agent推动企业级智能体规模化落地
大数据·人工智能·自然语言处理·自动驾驶
core51214 小时前
决策树 (Decision Tree):像“猜猜看”游戏一样的AI算法
人工智能·算法·决策树
catchadmin14 小时前
使用 Laravel Workflow 作为 MCP 工具提供给 AI 客户端
人工智能·php·laravel
艾醒(AiXing-w)14 小时前
大模型原理剖析——矩阵吸收优化:LLM推理加速的核心原理与实践
人工智能·线性代数·语言模型·矩阵
Dream Algorithm14 小时前
《换手率》
笔记·金融
龙腾AI白云15 小时前
知识图谱构建(2)四、知识推理五、知识表示六、图数据库七、NL2SQL#人工智能#具身智能#VLA#大模型
人工智能
元智启15 小时前
企业AI智能体:生态融合重构生产力,中国方案领跑全球智能化转型——从单点突破到产业协同的范式革命
人工智能·重构