【机器学习】 16. 降维:PCA-主成分分析 Principle Component Analysis

1. 高维会有什么问题?

  1. 慢的训练
  2. 不可靠的分类
  3. 过度拟合
  4. 构建可解释的模型是不可能的
  5. 可视化的问题
  6. 并不是所有的变量都很重要。

2. PCA

  1. PCA是最流行的降维方法
  2. 通常称为特征投影法。
  3. 其主要思想是找到一组新的维度,并将数据投射到其中。
    -更小的维度,捕捉数据的本质

主要思路:给定N个具有维度(m个特征)的例子

求:m个相互正交的新轴,使var(Z1) > var(Z2)...> var(Zm)

主分量是定义新坐标系的向量。

它们是根据它们捕获的方差来排序的

每个主成分都是原始特征的线性组合. 第一个主成分是使得数据方差最大的方向, 第二个主成分是与第一个主成分正交的条件下, 方差最大的方向, 依此类推...

确定降维数量

  1. 最小方差百分比
  2. 肘部法, Elbow Method. 绘制主成分的数量和累积方差图, 通常会在曲线上出现一个"肘点"

确定主成分

通过奇异值分解, Singular Value Decomposition, SVD确定PC. 它是一种标准的矩阵分解方法, 能够进行坐标系的变换

n x m的矩阵X可以分解成3个矩阵乘积:
X = U ∗ Λ ∗ V T X = U * Λ*V^T X=U∗Λ∗VT

U 是n x m的正交矩阵

(数据在新坐标系中的新坐标)(左奇异向量空间)

V^T是m x m正交矩阵V的转置

(右奇异向量空间)

Λ是一个m x m的对角矩阵包括奇异值

(在新坐标系中的尺度变化)

相关推荐
qq_416276422 小时前
LOFAR物理频谱特征提取及实现
人工智能
余俊晖2 小时前
如何构造一个文档解析的多模态大模型?MinerU2.5架构、数据、训练方法
人工智能·文档解析
Akamai中国4 小时前
Linebreak赋能实时化企业转型:专业系统集成商携手Akamai以实时智能革新企业运营
人工智能·云计算·云服务
LiJieNiub5 小时前
读懂目标检测:从基础概念到主流算法
人工智能·计算机视觉·目标跟踪
weixin_519535775 小时前
从ChatGPT到新质生产力:一份数据驱动的AI研究方向指南
人工智能·深度学习·机器学习·ai·chatgpt·数据分析·aigc
爱喝白开水a5 小时前
LangChain 基础系列之 Prompt 工程详解:从设计原理到实战模板_langchain prompt
开发语言·数据库·人工智能·python·langchain·prompt·知识图谱
takashi_void6 小时前
如何在本地部署大语言模型(Windows,Mac,Linux)三系统教程
linux·人工智能·windows·macos·语言模型·nlp
OpenCSG6 小时前
【活动预告】2025斗拱开发者大会,共探支付与AI未来
人工智能·ai·开源·大模型·支付安全
生命是有光的6 小时前
【深度学习】神经网络基础
人工智能·深度学习·神经网络
数字供应链安全产品选型6 小时前
国家级!悬镜安全入选两项“网络安全国家标准应用实践案例”
人工智能·安全·web安全