【机器学习】 16. 降维:PCA-主成分分析 Principle Component Analysis

1. 高维会有什么问题?

  1. 慢的训练
  2. 不可靠的分类
  3. 过度拟合
  4. 构建可解释的模型是不可能的
  5. 可视化的问题
  6. 并不是所有的变量都很重要。

2. PCA

  1. PCA是最流行的降维方法
  2. 通常称为特征投影法。
  3. 其主要思想是找到一组新的维度,并将数据投射到其中。
    -更小的维度,捕捉数据的本质

主要思路:给定N个具有维度(m个特征)的例子

求:m个相互正交的新轴,使var(Z1) > var(Z2)...> var(Zm)

主分量是定义新坐标系的向量。

它们是根据它们捕获的方差来排序的

每个主成分都是原始特征的线性组合. 第一个主成分是使得数据方差最大的方向, 第二个主成分是与第一个主成分正交的条件下, 方差最大的方向, 依此类推...

确定降维数量

  1. 最小方差百分比
  2. 肘部法, Elbow Method. 绘制主成分的数量和累积方差图, 通常会在曲线上出现一个"肘点"

确定主成分

通过奇异值分解, Singular Value Decomposition, SVD确定PC. 它是一种标准的矩阵分解方法, 能够进行坐标系的变换

n x m的矩阵X可以分解成3个矩阵乘积:
X = U ∗ Λ ∗ V T X = U * Λ*V^T X=U∗Λ∗VT

U 是n x m的正交矩阵

(数据在新坐标系中的新坐标)(左奇异向量空间)

V^T是m x m正交矩阵V的转置

(右奇异向量空间)

Λ是一个m x m的对角矩阵包括奇异值

(在新坐标系中的尺度变化)

相关推荐
c#上位机3 分钟前
halcon图像腐蚀—erosion1
图像处理·人工智能·计算机视觉
物流可信数据空间3 分钟前
数据要素×数智住建:可信数据空间筑牢底座 “数据+AI”激活变革新动能
人工智能
wshzd3 分钟前
LLM之Agent(三十七)|AI Agents(六):AI Agents架构
人工智能·架构
阿桂天山4 分钟前
怎样让数据资产灵动起来
大数据·人工智能
知行力5 分钟前
AI一周资讯 251129-251205
人工智能·chatgpt
老赵聊算法、大模型备案7 分钟前
新规解读|《公安机关网络空间安全监督检查办法(征求意见稿)》发布,AI与互联网企业需重点关注哪些合规义务?
人工智能·安全·web安全
艾莉丝努力练剑10 分钟前
【Python基础:语法第三课】Python 函数详解:定义、参数、返回值与作用域
服务器·人工智能·windows·python·pycharm
丝斯201111 分钟前
AI学习笔记整理(29)—— 计算机视觉之人体姿态估计相关算法
人工智能·笔记·学习
biyezuopinvip12 分钟前
图像处理报告基于CNN的监控视频流的课堂签到系统
图像处理·人工智能·cnn·图像处理报告·基于cnn的·监控视频流的·课堂签到系统
xixixi7777714 分钟前
二值化——将具有丰富灰度或彩色信息的图像,转换为仅由两种像素值(通常是0和1,或0和255) 组成的图像,即黑白图像
网络·图像处理·人工智能·学习·计算机视觉·信息与通信