【机器学习】 16. 降维:PCA-主成分分析 Principle Component Analysis

1. 高维会有什么问题?

  1. 慢的训练
  2. 不可靠的分类
  3. 过度拟合
  4. 构建可解释的模型是不可能的
  5. 可视化的问题
  6. 并不是所有的变量都很重要。

2. PCA

  1. PCA是最流行的降维方法
  2. 通常称为特征投影法。
  3. 其主要思想是找到一组新的维度,并将数据投射到其中。
    -更小的维度,捕捉数据的本质

主要思路:给定N个具有维度(m个特征)的例子

求:m个相互正交的新轴,使var(Z1) > var(Z2)...> var(Zm)

主分量是定义新坐标系的向量。

它们是根据它们捕获的方差来排序的

每个主成分都是原始特征的线性组合. 第一个主成分是使得数据方差最大的方向, 第二个主成分是与第一个主成分正交的条件下, 方差最大的方向, 依此类推...

确定降维数量

  1. 最小方差百分比
  2. 肘部法, Elbow Method. 绘制主成分的数量和累积方差图, 通常会在曲线上出现一个"肘点"

确定主成分

通过奇异值分解, Singular Value Decomposition, SVD确定PC. 它是一种标准的矩阵分解方法, 能够进行坐标系的变换

n x m的矩阵X可以分解成3个矩阵乘积:
X = U ∗ Λ ∗ V T X = U * Λ*V^T X=U∗Λ∗VT

U 是n x m的正交矩阵

(数据在新坐标系中的新坐标)(左奇异向量空间)

V^T是m x m正交矩阵V的转置

(右奇异向量空间)

Λ是一个m x m的对角矩阵包括奇异值

(在新坐标系中的尺度变化)

相关推荐
JXL186012 分钟前
机器学习概念(面试题库)
人工智能·机器学习
星期天要睡觉12 分钟前
机器学习深度学习 所需数据的清洗实战案例 (结构清晰、万字解析、完整代码)包括机器学习方法预测缺失值的实践
人工智能·深度学习·机器学习·数据挖掘
点云SLAM16 分钟前
Eigen中Dense 模块简要介绍和实战应用示例(最小二乘拟合直线、协方差矩阵计算和稀疏求解等)
线性代数·算法·机器学习·矩阵·机器人/slam·密集矩阵与向量·eigen库
岁月静好202516 分钟前
BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain
人工智能·机器学习
说私域18 分钟前
基于开源 AI 大模型 AI 智能名片 S2B2C 商城小程序视角下的企业组织能力建设与破圈升级
人工智能·小程序
2401_8588698019 分钟前
K近邻算法(knn)
人工智能
aneasystone本尊32 分钟前
学习 Coze Studio 的知识库入库逻辑(续)
人工智能
renhongxia133 分钟前
大模型微调RAG、LORA、强化学习
人工智能·深度学习·算法·语言模型
张较瘦_40 分钟前
[论文阅读] 人工智能 | 当Hugging Face遇上GitHub:预训练语言模型的跨平台同步难题与解决方案
论文阅读·人工智能·github
Cloud Traveler1 小时前
从 0 到 1 开发校园二手交易系统:飞算 JavaAI 全流程实战
人工智能·java开发·飞算javaai炫技赛