聚划算!一区算法!双分解+牛顿拉夫逊优化+深度学习!CEEMDAN-VMD-NRBO-Transformer多元时序预测

目录

效果一览
















基本介绍

1.Matlab实现CEEMDAN-Kmeans-VMD-NRBO-Transformer融合K均值聚类的数据双重分解+牛顿-拉夫逊优化算法+Transformer多元时间序列预测(完整源码和数据)运行环境Matlab2023b及以上。

2.CEEMDAN分解,计算样本熵,根据样本熵进行kmeans聚类,调用VMD对高频分量二次分解, VMD分解的高频分量与前分量作为NRBO-Transformer模型的目标输出分别预测后相加。

3.多变量单输出,考虑历史特征的影响!评价指标包括R2、MAE、RMSE、MAPE等。

4.算法新颖。⑴ CEEMDAN模型处理高频数据,具有更高的准确率,能够跟踪数据的趋势以及变化。⑵ VMD 模型处理非线性、非平稳以及复杂的数据,表现得比EMD系列更好,因此将重构的数据通过VMD模型分解,提高了模型的准确度。(3)NRBO算法优化参数为自注意力机制头数、正则化系数、学习率!

5.直接替换Excel数据即可用,数据集为excel(光伏功率数据集,输入辐射度、气温、气压、湿度,输出光伏功率),注释清晰,适合新手小白,直接运行主文件一键出图。

程序设计

  • 完整程序私信博主回复Matlab实现CEEMDAN-VMD-NRBO-Transformer多元时序预测
matlab 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));

t_train = t_train';
t_test  = t_test' ;

%%  数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end

 
%%  参数设置
options = trainingOptions('adam', ...      % Adam 梯度下降算法
    'MaxEpochs', 100, ...                  % 最大训练次数 
    'InitialLearnRate', 0.01, ...          % 初始学习率为0.01
    'LearnRateSchedule', 'piecewise', ...  % 学习率下降
    'LearnRateDropFactor', 0.1, ...        % 学习率下降因子 0.1
    'LearnRateDropPeriod', 70, ...         % 经过训练后 学习率为 0.01*0.1
    'Shuffle', 'every-epoch', ...          % 每次训练打乱数据集
    'Verbose', 1);
figure
subplot(2,1,1)
plot(T_train,'k--','LineWidth',1.5);
hold on
plot(T_sim_a','r-','LineWidth',1.5)

参考资料

1\] https://hmlhml.blog.csdn.net/article/details/135536086?spm=1001.2014.3001.5502 \[2\] https://hmlhml.blog.csdn.net/article/details/137166860?spm=1001.2014.3001.5502 \[3\] https://hmlhml.blog.csdn.net/article/details/132372151

相关推荐
汤姆yu1 天前
基于深度学习的杂草检测系统
人工智能·深度学习
LaughingZhu1 天前
Product Hunt 每日热榜 | 2026-01-06
人工智能·经验分享·深度学习·神经网络·产品运营
狮子座明仔1 天前
HierGR:美团外卖搜索的层级语义生成式检索系统
人工智能·深度学习·语言模型·自然语言处理
老吴学AI1 天前
斯坦福AI顶级课程:AI 职业发展建议与市场展望(详细逐字稿)by 吴恩达和劳伦斯
人工智能·深度学习·机器学习·vibe coding
import_random1 天前
[深度学习]LSTM模型的构建模块(如何添加层)
深度学习
t198751281 天前
神经网络控制的多方法融合:PID、模型预测控制(MPC)与自适应策略
人工智能·深度学习·神经网络
brent4231 天前
DAY47 简单CNN
深度学习·神经网络·cnn
540_5401 天前
ADVANCE Day41
人工智能·python·深度学习
AI人工智能+1 天前
基于深度学习的表格识别技术,通过多模态神经网络实现高精度OCR识别,支持复杂表格结构解析和版面还原
深度学习·ocr·表格识别
能源系统预测和优化研究1 天前
传统机器学习(如xgboost、随机森林等)和深度学习(如LSTM等)在时间序列预测各有什么优缺点?
深度学习·随机森林·机器学习