Paddle Inference部署推理(七)

七:Paddle Inference推理 (python)API详解

6. 使用 IPU 进行预测

API定义如下:

复制代码
# 启用 IPU 进行预测
# 参数:ipu_device_num - 所需要的 IPU 个数
# 参数:ipu_micro_batch_size - 计算图输入的 batch size,用于根据输入 batch size 进行全图 Tensor shape 推导,仅在动态输入 batch size 的情况生效
# 参数:ipu_enable_pipelining - 使能 IPU 间数据流水
# 参数:ipu_batches_per_step - 在使能数据流水的条件下,指定每次跑多少 batch 的数据,如果关闭数据流水,该值应设置为 1
# 返回:None
paddle.inference.Config.enable_ipu(ipu_device_num = 1,
                                   ipu_micro_batch_size = 1,
                                   ipu_enable_pipelining = False,
                                   ipu_batches_per_step = 1)



# 配置 IPU 构图参数
# 参数:ipu_enable_fp16 - 使能 float16 模式,将 float32 计算图转换为 float16 计算图
# 参数:ipu_replica_num - 设置实例个数,举例 ipu_device_num = 2,表示单个实例需要 2 个 IPU 运行,设置ipu_replica_num = 8,表示总共有 8 个相同实例,所以总共需要 16 个 IPU
# 参数:ipu_available_memory_proportion - 设置 matmul / conv OP 可使用的内存比例,取值 (0.0, 1.0],比例越高,计算性能越好
# 参数:ipu_enable_half_partial - matmul OP 中间结果以 float16 存储于片上
# 参数:ipu_enable_model_runtime_executor - 使能model_runtime executor,设置为false时使用popart executor
# 返回:None
paddle.inference.Config.set_ipu_config(ipu_enable_fp16 = False,
                                       ipu_replica_num = 1,
                                       ipu_available_memory_proportion = 1.0,
                                       ipu_enable_half_partial = False,
                                       ipu_enable_model_runtime_executor = False)



# 配置 IPU Custom Ops 和 Patterns
# 参数:ipu_custom_ops_info - 设置 Paddle Op 和 IPU Custom Op 信息,需要给定 Paddle Op name,IPU Custom Op name,Op Domain 和 Op Version。例如:[["custom_relu", "Relu", "custom.ops", "1"]]
# 参数:ipu_custom_patterns - 开启或关闭特定 IPU pattern,需要给定 Pattern name 和 Pattern 状态。例如:{"AccumulatePriorityPattern", false}
# 返回:None
paddle.inference.Config.set_ipu_custom_info(ipu_custom_ops_info = None,
                                            ipu_custom_patterns = None)



# 从文件载入 IPU 配置信息
# 参数:config_path - 指定文件路径
# 返回:None
paddle.inference.Config.load_ipu_config(config_path)

代码示例:

复制代码
# 引用 paddle inference 预测库
import paddle.inference as paddle_infer

# 创建 config
config = paddle_infer.Config("./mobilenet_v1.pdmodel", "./mobilenet_v1.pdiparams")

# 启用 IPU,并设置单个实例所需要的 IPU 个数为 1
config.enable_ipu(1)

# 使能 float16 模式
config.set_ipu_config(True)
相关推荐
CoovallyAIHub15 小时前
全球OCR新标杆!百度0.9B小模型斩获四项SOTA,读懂复杂文档像人一样自然
深度学习·算法·计算机视觉
weixin_3776348415 小时前
【强化学习】RLMT强制 CoT提升训练效果
人工智能·算法·机器学习
Francek Chen15 小时前
【深度学习计算机视觉】14:实战Kaggle比赛:狗的品种识别(ImageNet Dogs)
人工智能·pytorch·深度学习·计算机视觉·kaggle·imagenet dogs
dxnb2215 小时前
Datawhale25年10月组队学习:math for AI+Task3线性代数(下)
人工智能·学习·线性代数
渡我白衣15 小时前
《未来的 AI 操作系统(四)——AgentOS 的内核设计:调度、记忆与自我反思机制》
人工智能·深度学习·机器学习·语言模型·数据挖掘·人机交互·语音识别
飞哥数智坊16 小时前
Claude Skills 实测体验:不用翻墙,GLM-4.6 也能玩转
人工智能·claude·chatglm (智谱)
FreeBuf_16 小时前
微软数字防御报告:AI成为新型威胁,自动化漏洞利用技术颠覆传统
人工智能·microsoft·自动化
MoRanzhi120316 小时前
Pillow 基础图像操作与数据预处理
图像处理·python·深度学习·机器学习·numpy·pillow·数据预处理
IT_陈寒16 小时前
Vue3性能优化实战:这7个技巧让我的应用加载速度提升50%!
前端·人工智能·后端
GIS数据转换器16 小时前
带高度多边形,生成3D建筑模型,支持多种颜色或纹理的OBJ、GLTF、3DTiles格式
数据库·人工智能·机器学习·3d·重构·无人机