【PyTorch】(基础四)---- 图像处理

图像处理

关于计算机图像处理都在torchvision库中,其中transforms 模块提供了丰富的图像预处理功能,用于数据增强和标准化等操作。比如我们之前使用的ToTensor类就来自这个模块,接下来介绍一些如何使用这个类完成其它的图像处理功能。

  1. 基本变换
    • ToTensor():将 PIL 图像或 NumPy 数组转换为 PyTorch 张量,并将像素值归一化到 [0, 1] 范围。
    • Normalize(mean, std):对张量进行标准化,减去均值并除以标准差。
    • Resize(size):调整图像大小。
    • CenterCrop(size):从中心裁剪图像。
    • RandomCrop(size):随机裁剪图像。
    • RandomHorizontalFlip(p):以给定的概率水平翻转图像。
    • RandomVerticalFlip(p):以给定的概率垂直翻转图像。
    • ColorJitter(brightness=0, contrast=0, saturation=0, hue=0):随机改变图像的亮度、对比度、饱和度和色调。
  2. 组合变换
    • Compose(transforms):将多个变换组合在一起,按顺序应用。

Normalize

Normalize用于将一个tensor类型的图像进行规范化处理,其主要参数为mean(均值)和std(方差),使用``input[channel] - mean[channel]) / std[channel]` 公式进行处理。

图片的Normalize处理主要应用于深度学习、机器学习和计算机视觉任务的预处理阶段,它的目的是为了使得数据具有更好的数值属性,实现加速训练过程和减少过拟合的目的,提高模型训练的效率和效果。

py 复制代码
from PIL import Image
import torchvision
from torch.utils.tensorboard import SummaryWriter
# 归一化
# Image读取图片
img = Image.open("test.jpg")

# 转换成tensor格式
myToTensor = torchvision.transforms.ToTensor()
img_tensor = myToTensor(img)

# 归一化,使用方法和ToTensor类似,先创建对象
myNormalize = torchvision.transforms.Normalize([0.5,0.5,0.5],[1,1,1])
img_norm = myNormalize(img_tensor)

# tensorboard可视化
writter = SummaryWriter('logs/log2')
writter.add_image('img_norm',img_norm)
writter.close()

运行结果:

Resize

在transform中,用resize实现调整图像大小的功能,resize的参数可以有两种表示方法,如果传入了两个数字,则宽高分别变为指定的大小;如果只传入一个数字,则使用最小边匹配,另一条变进行等比缩放

py 复制代码
# resize缩放图像
# 使用Image读取PIL类型的图像
img_PIL = Image.open('test.jpg')

# 使用ToTensor将PIL转为tensor类型
myTotensor = torchvision.transforms.ToTensor()
img_tensor = myTotensor(img_PIL)

# 将tensor图片进行resize
myResize = torchvision.transforms.Resize((2000, 1500))
img_resize = myResize(img_tensor)

# 只传一个参数
myResize2 = torchvision.transforms.Resize((1000))
img_resize2 = myResize2(img_tensor)

# 可视化
writter = SummaryWriter("logs/log3")
writter.add_image('原图:', img_tensor)
writter.add_image('两个参数变形后:', img_resize)
writter.add_image('一个参数变形后:', img_resize2)
writter.close()

RandomCrop

实现随机裁剪,用于数据增强

py 复制代码
writter = SummaryWriter("logs/log4")

# 使用Image读取PIL类型的图像
img_PIL = Image.open('test.jpg')

# 使用ToTensor将PIL转为tensor类型
myTotensor = torchvision.transforms.ToTensor()
img_tensor = myTotensor(img_PIL)

# 随机裁剪
my_randomcrop = torchvision.transforms.RandomCrop((1000,2000))
for i in range(10):
    img_randomcrop = my_randomcrop(img_tensor)
    # 指定迭代步数
    writter.add_image('random:',img_randomcrop,global_step=i)
writter.close()

通过拖动上面的进度条就可以看出每一次迭代产生的结果

Compose

Compose用于将多个变换组合在一起,按顺序应用。

py 复制代码
# 组合多个方法
my_compose = torchvision.transforms.Compose([
    torchvision.transforms.ToTensor(),
    torchvision.transforms.Normalize([0.5,0.5,0.5], [1,1,1]),
    torchvision.transforms.RandomCrop((1000,2000))
])

img_com = my_compose(img_PIL)
writter = SummaryWriter("logs/log5")
writter.add_image('组合变形:', img_com)
writter.close()
相关推荐
Ronin-Lotus4 小时前
深度学习篇---剪裁&缩放
图像处理·人工智能·缩放·剪裁
cpsvps5 小时前
3D芯片香港集成:技术突破与产业机遇全景分析
人工智能·3d
国科安芯5 小时前
抗辐照芯片在低轨卫星星座CAN总线通讯及供电系统的应用探讨
运维·网络·人工智能·单片机·自动化
AKAMAI5 小时前
利用DataStream和TrafficPeak实现大数据可观察性
人工智能·云原生·云计算
Ai墨芯1116 小时前
深度学习水论文:特征提取
人工智能·深度学习
无名工程师6 小时前
神经网络知识讨论
人工智能·神经网络
nbsaas-boot6 小时前
AI时代,我们更需要自己的开发方式与平台
人工智能
SHIPKING3936 小时前
【机器学习&深度学习】LLamaFactory微调效果与vllm部署效果不一致如何解决
人工智能·深度学习·机器学习
闻道且行之6 小时前
Windows|CUDA和cuDNN下载和安装,默认安装在C盘和不安装在C盘的两种方法
windows·深度学习·cuda·cudnn
jonyleek7 小时前
如何搭建一套安全的,企业级本地AI专属知识库系统?从安装系统到构建知识体系,全流程!
人工智能·安全