NLP论文速读(ICML 2024)|面相对齐大语言模型的迁移和合并奖励模型方法

论文速读 |Transforming and Combining Rewards for Aligning Large Language Models

论文信息:

简介:

本文探讨了如何使大型语言模型(LLMs)与人类偏好对齐。传统的对齐方法是先从偏好数据中学习一个奖励模型,然后使用这个奖励模型来更新语言模型。这种方法的背景是,我们希望语言模型的输出具有某些期望的属性,例如有帮助、无害、真实或有创造性。然而,这种方法面临两个主要问题:奖励模型的单调变换如何影响对齐效果,以及如何将多个奖励模型结合起来以对齐到多个属性。

本文的动机是通过概率解释对齐过程来改进语言模型的对齐效果。作者认为,对齐的目标是使模型输出符合特定属性的后验分布。因此,对齐到多个属性的目标是生成在所有属性上都"好"的输出样本。这种概率解释需要定义输出何时被认为是"好"的。在从偏好数据中学习的奖励模型的背景下,作者认为如果输出的奖励值大于某个特定于提示的参考值,则该输出是"好"的。

论文方法:

本文提出了一种称为**"LSC-变换"(log-sigmoid-centered transformation)**的方法来变换奖励模型。这种方法包括以下步骤:

**对齐目标的形式化:**首先定义对齐目标,即生成在特定属性上被认为是"好"的输出样本的分布。

**奖励变换:**作者推导出一种自然的变换选择,即对中心化的奖励应用log-sigmoid函数。这种变换有两个重要属性:

**强调改进表现不佳的输出:**通过减少非常高奖励值的边际效用,鼓励模型改进表现不佳的提示,并阻止模型通过优化超出奖励模型有效范围的奖励来进行"奖励黑客攻击"。

**奖励的合理聚合:**通过将变换后的奖励求和来实现逻辑与(AND)操作,即变换后的奖励之和对应于输出在所有测量属性上都是"好"的概率。

论文实验:

Figure 3展示了使用变换后的奖励与未变换的奖励进行对齐时的改进情况。图中比较了两种评估策略下的对齐模型相对于SFT(Supervised Finetuning)模型的胜率。

评估策略包括:

1)使用由PALM-2评估器判断的提示,比较对齐策略和随机SFT样本之间的胜率。

2)使用T5-XXL评估器,与SFT分位数(帮助性为85%,无害性为95%)进行比较的胜率。

结果显示,使用变换后的奖励进行对齐在所有KL距离水平上均优于使用原始奖励进行对齐。

论文链接:

https://arxiv.org/pdf/2402.00742

相关推荐
qq_271581792 小时前
Ubuntu OpenCV C++ 获取Astra Pro摄像头图像
人工智能·opencv·计算机视觉
电鱼智能的电小鱼2 小时前
基于电鱼 ARM 工控机的井下AI故障诊断方案——让煤矿远程监控更智能、更精准
网络·arm开发·人工智能·算法·边缘计算
拉姆哥的小屋3 小时前
时间序列早期分类中的置信度累积问题:从ECE-C到时序依赖建模
大数据·人工智能
蚁巡信息巡查系统3 小时前
政府网站与政务新媒体监测服务主要是做什么的?
大数据·人工智能
故事挺秃然3 小时前
大型语言模型(LLM)架构大比拼
语言模型·nlp
林恒smileZAZ3 小时前
移动端h5适配方案
人工智能·python·tensorflow
伟贤AI之路3 小时前
开源!纯 HTML 实现支持 0.75~2× 变速、iOS 熄屏防中断的英语点读站
人工智能·ai编程
编码时空的诗意行者3 小时前
LM实现教程:基于 nanochat项目 从零开始理解大语言模型
人工智能·语言模型·自然语言处理
兔兔爱学习兔兔爱学习3 小时前
ASR+MT+LLM+TTS 一体化实时翻译字幕系统
人工智能·自然语言处理·机器翻译
二向箔reverse3 小时前
用langchain搭建简单agent
人工智能·python·langchain