NLP论文速读(ICML 2024)|面相对齐大语言模型的迁移和合并奖励模型方法

论文速读 |Transforming and Combining Rewards for Aligning Large Language Models

论文信息:

简介:

本文探讨了如何使大型语言模型(LLMs)与人类偏好对齐。传统的对齐方法是先从偏好数据中学习一个奖励模型,然后使用这个奖励模型来更新语言模型。这种方法的背景是,我们希望语言模型的输出具有某些期望的属性,例如有帮助、无害、真实或有创造性。然而,这种方法面临两个主要问题:奖励模型的单调变换如何影响对齐效果,以及如何将多个奖励模型结合起来以对齐到多个属性。

本文的动机是通过概率解释对齐过程来改进语言模型的对齐效果。作者认为,对齐的目标是使模型输出符合特定属性的后验分布。因此,对齐到多个属性的目标是生成在所有属性上都"好"的输出样本。这种概率解释需要定义输出何时被认为是"好"的。在从偏好数据中学习的奖励模型的背景下,作者认为如果输出的奖励值大于某个特定于提示的参考值,则该输出是"好"的。

论文方法:

本文提出了一种称为**"LSC-变换"(log-sigmoid-centered transformation)**的方法来变换奖励模型。这种方法包括以下步骤:

**对齐目标的形式化:**首先定义对齐目标,即生成在特定属性上被认为是"好"的输出样本的分布。

**奖励变换:**作者推导出一种自然的变换选择,即对中心化的奖励应用log-sigmoid函数。这种变换有两个重要属性:

**强调改进表现不佳的输出:**通过减少非常高奖励值的边际效用,鼓励模型改进表现不佳的提示,并阻止模型通过优化超出奖励模型有效范围的奖励来进行"奖励黑客攻击"。

**奖励的合理聚合:**通过将变换后的奖励求和来实现逻辑与(AND)操作,即变换后的奖励之和对应于输出在所有测量属性上都是"好"的概率。

论文实验:

Figure 3展示了使用变换后的奖励与未变换的奖励进行对齐时的改进情况。图中比较了两种评估策略下的对齐模型相对于SFT(Supervised Finetuning)模型的胜率。

评估策略包括:

1)使用由PALM-2评估器判断的提示,比较对齐策略和随机SFT样本之间的胜率。

2)使用T5-XXL评估器,与SFT分位数(帮助性为85%,无害性为95%)进行比较的胜率。

结果显示,使用变换后的奖励进行对齐在所有KL距离水平上均优于使用原始奖励进行对齐。

论文链接:

https://arxiv.org/pdf/2402.00742

相关推荐
serve the people8 分钟前
神经网络中梯度计算求和公式求导问题
神经网络·算法·机器学习
云卓SKYDROID10 分钟前
无人机投屏技术解码过程详解!
人工智能·5g·音视频·无人机·科普·高科技·云卓科技
zy_destiny16 分钟前
【YOLOv12改进trick】三重注意力TripletAttention引入YOLOv12中,实现遮挡目标检测涨点,含创新点Python代码,方便发论文
网络·人工智能·python·深度学习·yolo·计算机视觉·三重注意力
自由的晚风18 分钟前
深度学习在SSVEP信号分类中的应用分析
人工智能·深度学习·分类
大数据追光猿18 分钟前
【大模型技术】LlamaFactory 的原理解析与应用
人工智能·python·机器学习·docker·语言模型·github·transformer
玩电脑的辣条哥34 分钟前
大模型LoRA微调训练原理是什么?
人工智能·lora·微调
TW-NLP40 分钟前
开源最强中文纠错大模型,超越华为17个点!
自然语言处理
极客BIM工作室40 分钟前
DeepSeek V3 源码:从入门到放弃!
人工智能
神秘的土鸡1 小时前
如何在WPS中接入DeepSeek并使用OfficeAI助手(超细!成功版本)
人工智能·机器学习·自然语言处理·数据分析·llama·wps
fydw_7151 小时前
PreTrainedModel 类代码分析:_load_pretrained_model
人工智能·pytorch