CV-MLLM经典论文解读| Link-Context Learning for Multimodal LLMs面向多模态大型语言模型的链接上下文学习

论文标题:

Link-Context Learning for Multimodal LLMs

面向多模态大型语言模型的链接上下文学习

论文链接:

Link-Context Learning for Multimodal LLMs论文下载

论文作者:

Yan Tai, Weichen Fan, Zhao Zhang, Feng Zhu, Rui Zhao, Ziwei Liu

内容简介:

这篇论文提出了一种新的学习方法------链式上下文学习(Link-Context Learning, LCL),旨在增强多模态大型语言模型(MLLMs)在对话中理解和应用新概念的能力。通过强调"从因果关系中推理",LCL超越了传统的上下文学习(In-Context Learning, ICL),通过加强支持集和查询集之间的因果关系,使MLLMs能够更有效地识别未见图像和理解新概念。为了评估这一新方法,作者引入了ISEKAI数据集,该数据集包含专门设计的未见生成图像-标签对,用于链式上下文学习。广泛的实验表明,LCL-MLLM在新概念的链式上下文学习能力上优于传统的MLLMs。

关键点:

1.链式上下文学习(LCL):

  • 引入了一种新的少样本学习设置,要求MLLMs在对话中吸收新概念,并保留这些知识以准确回答问题。
  • LCL通过在支持集和查询集之间建立因果链接,增强了模型对源和目标之间因果关系的理解。

2.ISEKAI数据集:

  • 为了评估MLLMs在LCL中的表现,作者发布了ISEKAI数据集,包含未见图像和全新概念。
  • 数据集的图像由Stable Diffusion和Midjourney生成,标签或概念是虚构的,以确保MLLMs完全未见。

3.实验结果:

  • 通过在ISEKAI数据集上的实验,展示了LCL方法的有效性,与现有的MLLMs相比,LCL-MLLM在处理完全未知图像的场景中表现出色。
  • 在ImageNet-100数据集上的实验也证实了LCL方法的有效性,该数据集包含100个训练阶段未见过的类别。

4.训练策略:

  • 论文提出了不同的训练策略,包括[2-way]、[2-way-random]、[2-way-weight]和[mix]策略,以提升模型在不同情况下的表现。
  • [mix]策略通过结合[2-way]任务和Shikra的原始任务,提升了模型的泛化能力。

CV-MLLM必读论文合集:

CV-MMLM必读论文合集

希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!

代码链接:

论文中提到,代码和数据将在以下链接发布:https://github.com/isekai-portal/Link-Context-Learning

相关推荐
Elastic 中国社区官方博客10 分钟前
Elasticsearch Open Inference API 增加了对 Jina AI 嵌入和 Rerank 模型的支持
大数据·人工智能·elasticsearch·搜索引擎·ai·全文检索·jina
美狐美颜sdk32 分钟前
直播美颜工具架构设计与性能优化实战:美颜SDK集成与实时处理
深度学习·美颜sdk·第三方美颜sdk·视频美颜sdk·美颜api
AWS官方合作商37 分钟前
Amazon Lex:AI对话引擎重构企业服务新范式
人工智能·ai·机器人·aws
workflower41 分钟前
Prompt Engineering的重要性
大数据·人工智能·设计模式·prompt·软件工程·需求分析·ai编程
curemoon1 小时前
理解都远正态分布中指数项的精度矩阵(协方差逆矩阵)
人工智能·算法·矩阵
胡桃不是夹子2 小时前
CPU安装pytorch(别点进来)
人工智能·pytorch·python
Fansv5872 小时前
深度学习-6.用于计算机视觉的深度学习
人工智能·深度学习·计算机视觉
xjxijd2 小时前
AI 为金融领域带来了什么突破?
人工智能·其他
SKYDROID云卓小助手2 小时前
无人设备遥控器之如何分享数传篇
网络·人工智能·算法·计算机视觉·电脑
deephub2 小时前
LLM高效推理:KV缓存与分页注意力机制深度解析
人工智能·深度学习·语言模型