CV-MLLM经典论文解读| Link-Context Learning for Multimodal LLMs面向多模态大型语言模型的链接上下文学习

论文标题:

Link-Context Learning for Multimodal LLMs

面向多模态大型语言模型的链接上下文学习

论文链接:

Link-Context Learning for Multimodal LLMs论文下载

论文作者:

Yan Tai, Weichen Fan, Zhao Zhang, Feng Zhu, Rui Zhao, Ziwei Liu

内容简介:

这篇论文提出了一种新的学习方法------链式上下文学习(Link-Context Learning, LCL),旨在增强多模态大型语言模型(MLLMs)在对话中理解和应用新概念的能力。通过强调"从因果关系中推理",LCL超越了传统的上下文学习(In-Context Learning, ICL),通过加强支持集和查询集之间的因果关系,使MLLMs能够更有效地识别未见图像和理解新概念。为了评估这一新方法,作者引入了ISEKAI数据集,该数据集包含专门设计的未见生成图像-标签对,用于链式上下文学习。广泛的实验表明,LCL-MLLM在新概念的链式上下文学习能力上优于传统的MLLMs。

关键点:

1.链式上下文学习(LCL):

  • 引入了一种新的少样本学习设置,要求MLLMs在对话中吸收新概念,并保留这些知识以准确回答问题。
  • LCL通过在支持集和查询集之间建立因果链接,增强了模型对源和目标之间因果关系的理解。

2.ISEKAI数据集:

  • 为了评估MLLMs在LCL中的表现,作者发布了ISEKAI数据集,包含未见图像和全新概念。
  • 数据集的图像由Stable Diffusion和Midjourney生成,标签或概念是虚构的,以确保MLLMs完全未见。

3.实验结果:

  • 通过在ISEKAI数据集上的实验,展示了LCL方法的有效性,与现有的MLLMs相比,LCL-MLLM在处理完全未知图像的场景中表现出色。
  • 在ImageNet-100数据集上的实验也证实了LCL方法的有效性,该数据集包含100个训练阶段未见过的类别。

4.训练策略:

  • 论文提出了不同的训练策略,包括[2-way]、[2-way-random]、[2-way-weight]和[mix]策略,以提升模型在不同情况下的表现。
  • mix\]策略通过结合\[2-way\]任务和Shikra的原始任务,提升了模型的泛化能力。

CV-MLLM必读论文合集:

CV-MMLM必读论文合集

希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!

代码链接:

论文中提到,代码和数据将在以下链接发布:https://github.com/isekai-portal/Link-Context-Learning

相关推荐
双翌视觉27 分钟前
机器视觉对位中的常见模型与技术原理
数码相机·计算机视觉·机器视觉
风铃喵游36 分钟前
让大模型调用MCP服务变得超级简单
前端·人工智能
旷世奇才李先生39 分钟前
Pillow 安装使用教程
深度学习·microsoft·pillow
booooooty1 小时前
基于Spring AI Alibaba的多智能体RAG应用
java·人工智能·spring·多智能体·rag·spring ai·ai alibaba
PyAIExplorer1 小时前
基于 OpenCV 的图像 ROI 切割实现
人工智能·opencv·计算机视觉
风口猪炒股指标1 小时前
技术分析、超短线打板模式与情绪周期理论,在市场共识的形成、分歧、瓦解过程中缘起性空的理解
人工智能·博弈论·群体博弈·人生哲学·自我引导觉醒
ai_xiaogui2 小时前
一键部署AI工具!用AIStarter快速安装ComfyUI与Stable Diffusion
人工智能·stable diffusion·部署ai工具·ai应用市场教程·sd快速部署·comfyui一键安装
聚客AI3 小时前
Embedding进化论:从Word2Vec到OpenAI三代模型技术跃迁
人工智能·llm·掘金·日新计划
weixin_387545643 小时前
深入解析 AI Gateway:新一代智能流量控制中枢
人工智能·gateway
聽雨2373 小时前
03每日简报20250705
人工智能·社交电子·娱乐·传媒·媒体