CV-MLLM经典论文解读| Link-Context Learning for Multimodal LLMs面向多模态大型语言模型的链接上下文学习

论文标题:

Link-Context Learning for Multimodal LLMs

面向多模态大型语言模型的链接上下文学习

论文链接:

Link-Context Learning for Multimodal LLMs论文下载

论文作者:

Yan Tai, Weichen Fan, Zhao Zhang, Feng Zhu, Rui Zhao, Ziwei Liu

内容简介:

这篇论文提出了一种新的学习方法------链式上下文学习(Link-Context Learning, LCL),旨在增强多模态大型语言模型(MLLMs)在对话中理解和应用新概念的能力。通过强调"从因果关系中推理",LCL超越了传统的上下文学习(In-Context Learning, ICL),通过加强支持集和查询集之间的因果关系,使MLLMs能够更有效地识别未见图像和理解新概念。为了评估这一新方法,作者引入了ISEKAI数据集,该数据集包含专门设计的未见生成图像-标签对,用于链式上下文学习。广泛的实验表明,LCL-MLLM在新概念的链式上下文学习能力上优于传统的MLLMs。

关键点:

1.链式上下文学习(LCL):

  • 引入了一种新的少样本学习设置,要求MLLMs在对话中吸收新概念,并保留这些知识以准确回答问题。
  • LCL通过在支持集和查询集之间建立因果链接,增强了模型对源和目标之间因果关系的理解。

2.ISEKAI数据集:

  • 为了评估MLLMs在LCL中的表现,作者发布了ISEKAI数据集,包含未见图像和全新概念。
  • 数据集的图像由Stable Diffusion和Midjourney生成,标签或概念是虚构的,以确保MLLMs完全未见。

3.实验结果:

  • 通过在ISEKAI数据集上的实验,展示了LCL方法的有效性,与现有的MLLMs相比,LCL-MLLM在处理完全未知图像的场景中表现出色。
  • 在ImageNet-100数据集上的实验也证实了LCL方法的有效性,该数据集包含100个训练阶段未见过的类别。

4.训练策略:

  • 论文提出了不同的训练策略,包括[2-way]、[2-way-random]、[2-way-weight]和[mix]策略,以提升模型在不同情况下的表现。
  • mix\]策略通过结合\[2-way\]任务和Shikra的原始任务,提升了模型的泛化能力。

CV-MLLM必读论文合集:

CV-MMLM必读论文合集

希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!

代码链接:

论文中提到,代码和数据将在以下链接发布:https://github.com/isekai-portal/Link-Context-Learning

相关推荐
stbomei1 小时前
当 AI 开始 “理解” 情感:情感计算技术正在改写人机交互规则
人工智能·人机交互
Moshow郑锴6 小时前
人工智能中的(特征选择)数据过滤方法和包裹方法
人工智能
TY-20256 小时前
【CV 目标检测】Fast RCNN模型①——与R-CNN区别
人工智能·目标检测·目标跟踪·cnn
CareyWYR7 小时前
苹果芯片Mac使用Docker部署MinerU api服务
人工智能
失散138 小时前
自然语言处理——02 文本预处理(下)
人工智能·自然语言处理
mit6.8248 小时前
[1Prompt1Story] 滑动窗口机制 | 图像生成管线 | VAE变分自编码器 | UNet去噪神经网络
人工智能·python
sinat_286945198 小时前
AI应用安全 - Prompt注入攻击
人工智能·安全·prompt
迈火9 小时前
ComfyUI-3D-Pack:3D创作的AI神器
人工智能·gpt·3d·ai·stable diffusion·aigc·midjourney
Moshow郑锴10 小时前
机器学习的特征工程(特征构造、特征选择、特征转换和特征提取)详解
人工智能·机器学习
CareyWYR11 小时前
每周AI论文速递(250811-250815)
人工智能