OpenCV基于均值漂移算法(pyrMeanShiftFiltering)的水彩画特效

1、均值漂移算法原理

pyrMeanShiftFiltering算法结合了均值迁移(Mean Shift)算法和图像金字塔(Image Pyramid)的概念,用于图像分割和平滑处理。以下是该算法的详细原理:

1.1 、均值迁移(Mean Shift)算法原理

  • 目标:均值迁移算法的目标是找到图像中颜色分布的峰值,这些峰值代表了图像中的不同区域或对象。
  • 特征空间:对于一幅彩色图像,每个像素点可以表示为一个五维向量(x, y, r, g, b),其中(x, y)是像素的位置坐标,(r, g, b)是像素的颜色值。
  • 迭代过程
  1. 以某个像素点P为圆心,构建一个空间球体(在特征空间中),球体的半径由空间域半径sr和颜色域半径sp决定。
  2. 在这个空间球体内,计算所有点相对于中心点P的色彩向量之和,然后移动中心点P到这个向量的终点,作为新的中心点P1。
  3. 重复上述步骤,直到中心点Pn不再移动,满足迭代终止条件(如达到最大迭代次数或迭代精度)。
  • 结果:经过迭代,收敛到同一点的起始点被归为一类,这些点的像素值被更新为该类中心点的像素值。这样,图像中的相似区域就被平滑处理,同时保留了边缘等差异较大的特征。

1.2 图像金字塔(Image Pyramid)原理

图像金字塔是一种多分辨率图像表示方法,通过将图像在不同尺度下进行下采样,生成一系列分辨率逐渐降低的图像。在pyrMeanShiftFiltering算法中,图像金字塔用于在不同尺度上对图像进行均值迁移滤波,从而增强算法对图像细节的捕捉能力。

2、 pyrMeanShiftFiltering算法实现

函数原型

python 复制代码
dst = cv2.pyrMeanShiftFiltering(src, sp, sr[, dst[, maxLevel[, termcrit]]])

参数说明

src(输入图像):

  • 类型:8位、3通道图像。
  • 说明:这是待处理的源图像。

dst(输出图像):

  • 类型:与源图像格式和大小相同的图像。
  • 说明:这是处理后的输出图像。

sp(空间窗口半径):

  • 类型:double。
  • 说明:定义了像素在物理空间中的邻域范围。该值越大,表示考虑的邻域范围越广。

sr(颜色窗口半径):

  • 类型:double。
  • 说明:定义了像素在颜色空间中的邻域范围。该值越大,表示在颜色空间中考虑的相似颜色范围越广。

maxLevel(最大金字塔层级):

  • 类型:int。
  • 默认值:1。
  • 说明:用于控制图像金字塔的层级数。当maxLevel > 0时,会构建高斯金字塔,并在最小层上首先运行均值迁移过程。之后,结果会传播到较大的层,并且仅在金字塔较低分辨率层的颜色与当前层的颜色相差超过sr的像素上再次运行迭代。

termcrit(终止准则):

  • 类型:TermCriteria。
  • 默认值:TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5,1)。
  • 说明:定义了何时停止均值迁移迭代的条件。可以是迭代次数满足终止条件、迭代目标与中心点偏差满足终止条件,或者两者的结合。

处理过程

  • 首先,在最高尺度的图像上应用均值迁移滤波。
  • 然后,将滤波后的图像下采样到下一尺度,并重复应用均值迁移滤波。
    这个过程一直持续到达到指定的金字塔层次max_level。
  • 输出:算法输出一张经过平滑处理和分割的图像。在这张图像中,相似颜色的区域被平滑处理,不同区域之间的边缘被保留下来。

效果调试

pyrMeanShiftFiltering算法在图像分割、平滑处理、特征提取等方面有广泛应用。通过调整算法参数(如sp、sr、max_level等),可以获得不同的处理效果。例如,较大的sp和sr值会导致更强烈的平滑效果,而较小的值则能保留更多的图像细节。

3、基于均值漂移的水彩画特效

python 复制代码
import cv2 as cv
import numpy as np

if __name__ == '__main__':
    #读取原始图像
    image = cv.imread('oldman.jpg', cv.IMREAD_COLOR)
    #均值漂移分割
    meanshift = cv.pyrMeanShiftFiltering(image, 16, 64, 2)
    #高斯平滑
    gaussian_filter = cv.GaussianBlur(meanshift, (3, 3), 0.8)
    #中值滤波
    result = cv.medianBlur(gaussian_filter, 3)
    ada_result = np.concatenate((image, result), axis=1)
    cv.imwrite('wash-painting.jpeg', ada_result)
    cv.waitKey()
相关推荐
AndrewHZ1 天前
【图像处理基石】图像匹配技术:从原理到实践,OpenCV实现与进阶方向
图像处理·人工智能·opencv·图像匹配·算法原理
AI妈妈手把手1 天前
YOLO V2全面解析:更快、更准、更强大的目标检测算法
人工智能·算法·yolo·目标检测·计算机视觉·yolo v2
柠檬甜不甜呀1 天前
海康相机与机器人标定
数码相机·计算机视觉·机器人
B站计算机毕业设计之家1 天前
计算机视觉:基于YOLOv8/YOLOv7/YOLOv6/YOLOv5的零售柜商品检测识别系统(Python+PySide6界面+训练代码)(源码+文档)✅
人工智能·深度学习·opencv·yolo·计算机视觉·零售·1024程序员节
CoovallyAIHub1 天前
一致性模型:单步生成高质量图像,破解扩散模型速度瓶颈
深度学习·算法·计算机视觉
音视频牛哥1 天前
AI智能体从系统智能到生态智能:SmartMediaKit 如何成为智能体时代的视频神经系统
人工智能·计算机视觉·音视频·大牛直播sdk·多智能体协同·rtsp播放器rtmp播放器·视频感知低延迟音视频
CoovallyAIHub1 天前
搞定边缘AI部署:开源神器RamaLama,让视觉语言模型无处不在
深度学习·算法·计算机视觉
CyberSoma1 天前
机器人模仿学习运动基元数学编码方法还有用吗?
人工智能·算法·计算机视觉·机器人
CoovallyAIHub1 天前
英伟达再出「神作」!黄仁勋华盛顿GTC宣布Vera Rubin超级芯片,联手诺基亚进军6G,市值直逼5万亿美元
深度学习·算法·计算机视觉
格林威1 天前
AOI在新能源电池制造领域的应用
人工智能·数码相机·计算机视觉·视觉检测·制造·工业相机