解读CVPR2024-3DGS论文分享|DNGaussian: Optimizing Sparse-View 3D Gaussian Radiance Fields with .....

论文标题

DNGaussian: Optimizing Sparse-View 3D Gaussian Radiance Fields with Global-Local Depth Normalization

DNGaussian:使用全局-局部深度归一化优化稀疏视图3D高斯辐射场

论文链接:

https://arxiv.org/abs/2403.06912

论文作者

Jiahe Li, Jiawei Zhang, Xiao Bai, Jin Zheng, Xin Ning, Jun Zhou, Lin Gu

内容简介

这篇论文介绍了DNGaussian,这是一个基于3D高斯辐射场的深度正则化框架,用于实现实时、高质量的少样本新视角合成,同时降低成本。

DNGaussian通过深度约束来解决输入视图减少时场景几何退化的问题,并提出了硬深度和软深度正则化以及全局-局部深度归一化技术,以在粗略的单目深度监督下恢复准确的场景几何,同时保持精细的颜色表现。通过在LLFF、DTU和Blender数据集上的广泛实验,DNGaussian在显著降低内存成本、减少训练时间25倍、渲染速度提升3000倍以上的同时,超越了现有最先进方法,实现了可比或更好的结果。

方法

1.3D Gaussian Splatting:

该方法使用一组3D高斯原语来表示场景,并利用可微分的splatting进行渲染。尽管在输入视图较少时仍能部分保留重建一些清晰和详细的局部特征的能力,但视图约束的减少会导致场景几何的大部分错误学习,从而在新视角合成中失败。

2.深度正则化:

论文探索了从预训练的单目深度估计器中提取深度信息,以纠正高斯场中错误学习的几何形状,并提出了深度归一化正则化的稀疏视图3D高斯辐射场(DNGaussian)。

3.硬深度和软深度正则化:

为了在不牺牲细粒度颜色性能的情况下,通过鼓励高斯原语之间的移动来实现粗略深度正则化的空间重塑。

4.全局-局部深度归一化:

引入了全局-局部深度归一化到深度损失函数中,鼓励以尺度不变的方式学习小的局部深度变化,从而改善3D高斯辐射场的详细几何重塑过程。

5.神经颜色渲染器:

为了解决在稀疏视图情况下容易过拟合的问题,论文提出了一个网格编码器和MLP作为神经颜色渲染器来预测每个原色的颜色。

6.训练细节:

论文详细描述了损失函数的构成,包括颜色重建损失、硬深度正则化和软深度正则化,以及如何通过全局和局部深度归一化来计算这些损失。

结论

DNGaussian框架通过深度正则化将3DGS引入到少样本新视角合成任务中,实现了在显著降低训练成本和实时渲染速度的同时,合成具有竞争性的高质量新视角视图。论文还讨论了该方法的局限性和未来的工作方向。 复制再试一次分享

CVPR2024论文合集链接:

https://arxiv.org/abs/2403.06912

希望这些论文能帮到你!如果觉得有用,记得点赞关注哦~ 后续还会更新更多论文合集!!

相关推荐
极客学术工坊1 小时前
2022年第十二届MathorCup高校数学建模挑战赛-D题 移动通信网络站址规划和区域聚类问题
机器学习·数学建模·启发式算法·聚类
吃着火锅x唱着歌2 小时前
LeetCode 1128.等价多米诺骨牌对的数量
算法·leetcode·职场和发展
十八岁讨厌编程2 小时前
【算法训练营 · 补充】LeetCode Hot100(中)
算法·leetcode
橘颂TA2 小时前
【剑斩OFFER】算法的暴力美学——最小覆盖字串
算法·c/c++·就业
wearegogog1232 小时前
基于混合蛙跳算法和漏桶算法的无线传感器网络拥塞控制与分簇新方法
网络·算法
chenzhiyuan20183 小时前
《十五五规划》下的AI边缘计算机遇:算力下沉与工业智能化
人工智能·边缘计算
whaosoft-1433 小时前
51c深度学习~合集11
人工智能
Tiandaren3 小时前
大模型应用03 || 函数调用 Function Calling || 概念、思想、流程
人工智能·算法·microsoft·数据分析
2301_795167204 小时前
玩转Rust高级应用 如何进行理解Refutability(可反驳性): 模式是否会匹配失效
开发语言·算法·rust
领航猿1号4 小时前
Pytorch 内存布局优化:Contiguous Memory
人工智能·pytorch·深度学习·机器学习